传送门:【HDU】5111 Alexandra and Two Trees
题目分析:
我们首先考虑线段上的此问题。
我们有两个序列,序列1,序列2。首先我们将序列2的权值映射成序列1中和该权值相同的位置的下标(正是因为要保证映射唯一,所以序列1内的数要各不相同,序列2不需要各不相同),如果数不存在就映射到编号0。我们需要用到主席树——可持久化线段树,按照序列2从左到右的顺序依次插入每个权值到主席树中。然后每次查询【L1,R1】、【L2,R2】,答案就是第R2棵主席树中权值在【L1,R1】内的个数(R2中小于等于R1的和 - R2中小于等于L1-1的和)减去第L2-1棵主席树中权值在【L1,R1】内的个数(同上)。
然后将问题转化到树上。为了保证算法的复杂度,我们考虑使用树链剖分,将树分成logN段连续的线段,这样【u1,v1】上最多包括logN条连续的线段,【u2,v2】上最多包括logN条连续的线段。这样每次询问转化成【u1,v1】上每条线段和【u2,v2】上每条线段交集的和!
算法复杂度O(N*log^3N)。
一开始连线段上的交集都不会求,但是在我们强大的大一双金爷zhou神的指导下会了线段上的交集的求法,然后树上的算法就很容易想到了。
代码如下:
#include <map> #include <vector> #include <cstdio> #include <cstring> #include <algorithm> using namespace std ; typedef long long LL ; #pragma comment(linker, "/STACK:16777216") #define rep( i , a , b ) for ( int i = ( a ) ; i < ( b ) ; ++ i ) #define For( i , a , b ) for ( int i = ( a ) ; i <= ( b ) ; ++ i ) #define rev( i , a , b ) for ( int i = ( a ) ; i >= ( b ) ; -- i ) #define clr( a , x ) memset ( a , x , sizeof a ) #define mid ( ( l + r ) >> 1 ) const int MAXN = 100005 ; const int MAXE = 100005 ; struct Node { Node* c[2] ; int sum ; } ; struct Edge { int v , n ; Edge () {} Edge ( int v , int n ) : v ( v ) , n ( n ) {} } ; struct Seg { int L , R ; Seg () {} Seg ( int L , int R ) : L ( L ) , R ( R ) {} } ; struct HeavyLightDecompose { Edge E[MAXE] ; int H[MAXN] , cntE ; int pre[MAXN] ; int pos[MAXN] ; int dep[MAXN] ; int siz[MAXN] ; int son[MAXN] ; int top[MAXN] ; int val[MAXN] ; int tree_idx ; void clear () { tree_idx = 0 ; dep[1] = 0 ; pre[1] = 0 ; siz[0] = 0 ; cntE = 0 ; clr ( H , -1 ) ; } void addedge ( int u , int v ) { E[cntE] = Edge ( v , H[u] ) ; H[u] = cntE ++ ; } void dfs ( int u ) { siz[u] = 1 ; son[u] = 0 ; for ( int i = H[u] ; ~i ; i = E[i].n ) { int v = E[i].v ; if ( v == pre[u] ) continue ; pre[v] = u ; dep[v] = dep[u] + 1 ; dfs ( v ) ; siz[u] += siz[v] ; if ( siz[v] > siz[son[u]] ) son[u] = v ; } } void rebuild ( int u , int top_element ) { top[u] = top_element ; pos[u] = ++ tree_idx ; if ( son[u] ) rebuild ( son[u] , top_element ) ; for ( int i = H[u] ; ~i ; i = E[i].n ) { int v = E[i].v ; if ( v != pre[u] && v != son[u] ) { rebuild ( v , v ) ; } } } } ; Node pool[MAXN * 50] ; Node* root[MAXN] ; Node* cur ; HeavyLightDecompose T1 , T2 ; Seg seg[MAXN] ; int top ; int cnt ; int n1 , n2 , q ; map < int , int > mp ; void clear () { T1.clear () ; T2.clear () ; mp.clear () ; cur = pool ; } void build ( Node* &now , int l , int r ) { now = cur ++ ; now->sum = 0 ; if ( l == r ) return ; int m = mid ; build ( now->c[0] , l , m ) ; build ( now->c[1] , m + 1 , r ) ; } void insert ( Node* &now , Node* old , int x , int v , int l , int r ) { now = cur ++ ; if ( l == r ) { now->sum = old->sum + v ; return ; } int m = mid ; if ( x <= m ) { now->c[1] = old->c[1] ; insert ( now->c[0] , old->c[0] , x , v , l , m ) ; } else { now->c[0] = old->c[0] ; insert ( now->c[1] , old->c[1] , x , v , m + 1 , r ) ; } now->sum = now->c[0]->sum + now->c[1]->sum ; } int query ( Node* now , Node* old , int x , int l , int r ) { if ( x == 0 ) return 0 ; int ans = 0 ; while ( l < r ) { int m = mid ; if ( x <= m ) { now = now->c[0] ; old = old->c[0] ; r = m ; } else { //printf ( "%d %d %d %d\n" , now->c[0]->sum , old->c[0]->sum , l , r ) ; ans += now->c[0]->sum - old->c[0]->sum ; now = now->c[1] ; old = old->c[1] ; l = m + 1 ; } } //printf ( "-------%d %d\n" , x , ans ) ; ans += now->sum - old->sum ; //printf ( "-------%d %d\n" , x , ans ) ; return ans ; } void dfs ( int u ) { if ( mp.count ( T2.val[u] ) ) insert ( root[T2.pos[u]] , root[T2.pos[u] - 1] , mp[T2.val[u]] , 1 , 1 , cnt ) ; else root[T2.pos[u]] = root[T2.pos[u] - 1] ; //if ( mp.count ( T2.val[u] ) ) printf ( "%d %d\n" , u , mp[T2.val[u]] ) ; //else printf ( "%d %d\n" , u , 0 ) ; if ( T2.son[u] ) dfs ( T2.son[u] ) ; for ( int i = T2.H[u] ; ~i ; i = T2.E[i].n ) { int v = T2.E[i].v ; if ( v != T2.pre[u] && v != T2.son[u] ) { dfs ( v ) ; } } } void get_seg ( int x , int y ) { top = 0 ; while ( T1.pos[T1.top[x]] != T1.pos[T1.top[y]] ) { if ( T1.dep[T1.top[x]] < T1.dep[T1.top[y]] ) swap ( x , y ) ; seg[top ++] = Seg ( T1.pos[T1.top[x]] , T1.pos[x] ) ; x = T1.pre[T1.top[x]] ; } if ( T1.dep[x] > T1.dep[y] ) swap ( x , y ) ; seg[top ++] = Seg ( T1.pos[x] , T1.pos[y] ) ; } int get_sum ( int x , int y ) { int ans = 0 ; while ( T2.pos[T2.top[x]] != T2.pos[T2.top[y]] ) { if ( T2.dep[T2.top[x]] < T2.dep[T2.top[y]] ) swap ( x , y ) ; rep ( i , 0 , top ) { int L = seg[i].L ; int R = seg[i].R ; ans -= query ( root[T2.pos[x]] , root[T2.pos[T2.top[x]] - 1] , L - 1 , 1 , cnt ) ; ans += query ( root[T2.pos[x]] , root[T2.pos[T2.top[x]] - 1] , R , 1 , cnt ) ; } x = T2.pre[T2.top[x]] ; } if ( T2.dep[x] > T2.dep[y] ) swap ( x , y ) ; rep ( i , 0 , top ) { int L = seg[i].L ; int R = seg[i].R ; ans -= query ( root[T2.pos[y]] , root[T2.pos[x] - 1] , L - 1 , 1 , cnt ) ; ans += query ( root[T2.pos[y]] , root[T2.pos[x] - 1] , R , 1 , cnt ) ; } return ans ; } void solve () { int u , v ; clear () ; cnt = n1 ; For ( i , 2 , n1 ) { scanf ( "%d" , &u ) ; T1.addedge ( u , i ) ; } For ( i , 1 , n1 ) scanf ( "%d" , &T1.val[i] ) ; scanf ( "%d" , &n2 ) ; For ( i , 2 , n2 ) { scanf ( "%d" , &u ) ; T2.addedge ( u , i ) ; } For ( i , 1 , n2 ) scanf ( "%d" , &T2.val[i] ) ; //cnt = unique ( n1 ) ; T1.dfs ( 1 ) ; T1.rebuild ( 1 , 1 ) ; For ( i , 1 , n1 ) mp[T1.val[i]] = T1.pos[i] ; //For ( i , 1 , n1 ) printf ( "%d %d\n" , i , T1.pos[i] ) ; build ( root[0] , 1 , cnt ) ; T2.dfs ( 1 ) ; T2.rebuild ( 1 , 1 ) ; dfs ( 1 ) ; scanf ( "%d" , &q ) ; while ( q -- ) { scanf ( "%d%d" , &u , &v ) ; get_seg ( u , v ) ; scanf ( "%d%d" , &u , &v ) ; //rep ( i , 0 , top ) printf ( "%d %d\n" , seg[i].L , seg[i].R ) ; int ans = get_sum ( u , v ) ; printf ( "%d\n" , ans ) ; } } int main () { while ( ~scanf ( "%d" , &n1 ) ) solve () ; return 0 ; }
------------------------------update------------------------------
根本不用树链剖分的。。。是我逗比。。主席树只要按照dfs序插入,然后路径就是u,v减去两倍的lca就好。
所以复杂度为O(Nlog^2N)。