省选模版复习——FFT

hdu1402 大整数乘法, 裸FFT

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;
const int Maxn=200005;
const double PI=acos(-1);
char S[Maxn],T[Maxn];
int ans[Maxn],n,m,i,N;
struct CP
{
  double x,y;
  CP operator +(const CP &a)const
    { return (CP){x+a.x, y+a.y}; }
  CP operator -(const CP &a)const
    { return (CP){x-a.x, y-a.y}; }
  CP operator *(const CP &a)const
    { return (CP){x*a.x-y*a.y, x*a.y+y*a.x}; }
} A[Maxn],B[Maxn];

void FFT(CP A[],int N,int flag){
  for (int i=1,j=0;i<N-1;i++){
  	for (int s=N; (~j)&s;j^=(s>>=1));
  	if (i<j) swap(A[i],A[j]);
  }
  for (int i=2;i<=N;i<<=1){
  	CP wn = (CP){ cos(2*PI/i), flag*sin(2*PI/i) };
  	for (int j=0;j<N;j+=i){
  	  CP w = (CP){1,0};
  	  for (int k=j;k<j+i/2;k++){
  	  	CP x = A[k], y = A[k+i/2]*w;
  	  	A[k] = x+y; A[k+i/2] = x-y;
  	  	w = w*wn;
  	  }
    }
  }
  if (flag==1) return;
  for (int i=0;i<N;i++) A[i].x/=N;
}

int main(){
  freopen("1402.in","r",stdin);
  freopen("1402.out","w",stdout);
  while (~scanf("%s",S)){
    scanf("%s",T);
    n=strlen(S);
    m=strlen(T);
    if ((n==1&&S[0]=='0') || (m==1&&T[0]=='0'))
      {puts("0");continue;}
    for (N=2;N<n+m;N<<=1);
    for (i=0;i<n;i++) A[n-i-1]=(CP){S[i]-'0',0};
    for (i=n;i<N;i++) A[i]=(CP){0,0};
    for (i=0;i<m;i++) B[m-i-1]=(CP){T[i]-'0',0};
    for (i=m;i<N;i++) B[i]=(CP){0,0};
    FFT(A,N,1); FFT(B,N,1);
    for (i=0;i<N;i++) A[i]=A[i]*B[i];
    FFT(A,N,-1);
    memset(ans,0,sizeof(ans));
    for (i=0;i<N;i++) ans[i]=(int)(A[i].x+0.5);
    for (i=0;i<N;i++){
      ans[i+1] += ans[i]/10;
      ans[i] %= 10;
    }
    for (i=N-1;i>=0;i--)
      if (ans[i]>0) break;
    for (;i>=0;i--)
      printf("%d",ans[i]);
    printf("\n");
  }
  return 0;
}


你可能感兴趣的:(fft)