hdu1402 大整数乘法, 裸FFT
#include <cmath> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int Maxn=200005; const double PI=acos(-1); char S[Maxn],T[Maxn]; int ans[Maxn],n,m,i,N; struct CP { double x,y; CP operator +(const CP &a)const { return (CP){x+a.x, y+a.y}; } CP operator -(const CP &a)const { return (CP){x-a.x, y-a.y}; } CP operator *(const CP &a)const { return (CP){x*a.x-y*a.y, x*a.y+y*a.x}; } } A[Maxn],B[Maxn]; void FFT(CP A[],int N,int flag){ for (int i=1,j=0;i<N-1;i++){ for (int s=N; (~j)&s;j^=(s>>=1)); if (i<j) swap(A[i],A[j]); } for (int i=2;i<=N;i<<=1){ CP wn = (CP){ cos(2*PI/i), flag*sin(2*PI/i) }; for (int j=0;j<N;j+=i){ CP w = (CP){1,0}; for (int k=j;k<j+i/2;k++){ CP x = A[k], y = A[k+i/2]*w; A[k] = x+y; A[k+i/2] = x-y; w = w*wn; } } } if (flag==1) return; for (int i=0;i<N;i++) A[i].x/=N; } int main(){ freopen("1402.in","r",stdin); freopen("1402.out","w",stdout); while (~scanf("%s",S)){ scanf("%s",T); n=strlen(S); m=strlen(T); if ((n==1&&S[0]=='0') || (m==1&&T[0]=='0')) {puts("0");continue;} for (N=2;N<n+m;N<<=1); for (i=0;i<n;i++) A[n-i-1]=(CP){S[i]-'0',0}; for (i=n;i<N;i++) A[i]=(CP){0,0}; for (i=0;i<m;i++) B[m-i-1]=(CP){T[i]-'0',0}; for (i=m;i<N;i++) B[i]=(CP){0,0}; FFT(A,N,1); FFT(B,N,1); for (i=0;i<N;i++) A[i]=A[i]*B[i]; FFT(A,N,-1); memset(ans,0,sizeof(ans)); for (i=0;i<N;i++) ans[i]=(int)(A[i].x+0.5); for (i=0;i<N;i++){ ans[i+1] += ans[i]/10; ans[i] %= 10; } for (i=N-1;i>=0;i--) if (ans[i]>0) break; for (;i>=0;i--) printf("%d",ans[i]); printf("\n"); } return 0; }