Catenyms
Description
A catenym is a pair of words separated by a period such that the last letter of the first word is the same as the last letter of the second. For example, the following are catenyms:
dog.gopher gopher.rat rat.tiger aloha.aloha arachnid.dog A compound catenym is a sequence of three or more words separated by periods such that each adjacent pair of words forms a catenym. For example, aloha.aloha.arachnid.dog.gopher.rat.tiger Given a dictionary of lower case words, you are to find a compound catenym that contains each of the words exactly once. Input
The first line of standard input contains t, the number of test cases. Each test case begins with 3 <= n <= 1000 - the number of words in the dictionary. n distinct dictionary words follow; each word is a string of between 1 and 20 lowercase letters on a line by itself.
Output
For each test case, output a line giving the lexicographically least compound catenym that contains each dictionary word exactly once. Output "***" if there is no solution.
Sample Input 2 6 aloha arachnid dog gopher rat tiger 3 oak maple elm Sample Output aloha.arachnid.dog.gopher.rat.tiger *** Source
Waterloo local 2003.01.25
|
思路:
建图+找欧拉路径。
感想:
这题难在保证答案字典序最小,注意‘.’的字典序最小,所以一个点到一个点有多条路径时要首先访问边(即单词)字典序小的(我是用set来处理的),然后点的访问顺序也要按字母顺序来(建边时处理一下就够了),这样就能保证整体字典序最小了。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <string> #include <vector> #include <set> #define maxn 30 using namespace std; int n,m,ans,cnt,num,xxc,sx,xxs; bool vis[1005],app[maxn]; int pre[maxn]; int in[maxn],out[maxn]; int sta[1005]; char s[1005][30],ts[30]; set<string>ss[maxn][maxn]; string s1; int pp[maxn]; struct Node { int v,next; } edge[1005]; void init() { int i; for(i=0; i<=26; i++) { pre[i]=i; } num=0; } int sfind(int x) // 查找时优化了路径 { while(pre[x]!=x) x=pre[x]; return x; } void smerge(int a,int b) // 合并时将深度小的集合合并到大的里面 { int x,y; x=sfind(a); y=sfind(b); if(x!=y) { pre[x]=y; num++; } } void init1() { int i,j; memset(pp,0,sizeof(pp)); memset(in,0,sizeof(in)); memset(out,0,sizeof(out)); memset(app,0,sizeof(app)); memset(vis,0,sizeof(vis)); for(i=0;i<26;i++) { for(j=0;j<26;j++) { ss[i][j].clear(); } } } void addedge(int u,int v) { cnt++; edge[cnt].v=v; edge[cnt].next=pp[u]; pp[u]=cnt; } bool isok() { int i,j,t,u,v; if(num!=xxc-1) return false ; u=v=0; for(i=0; i<26; i++) { if(in[i]==out[i]) continue ; t=in[i]-out[i]; if(t==1) u++; else if(t==-1) v++,sx=i; else return false ; } if(u==1&&v==1) return true ; else if(u==0&&v==0) { for(i=0;i<26;i++) { if(app[i]) { sx=i; break ; } } return true ; } return false ; } void dfs(int u) { int i,j; for(i=pp[u];i;i=edge[i].next) { if(!vis[i]) { vis[i]=1; dfs(edge[i].v); } } sta[++xxs]=u; } int main() { int i,j,t,len,u,v,k; scanf("%d",&t); while(t--) { init(); init1(); scanf("%d",&n); cnt=xxc=0; for(i=1; i<=n; i++) { scanf("%s",s[i]); } for(i=1;i<=n;i++) // 用STL用不好 只能自己写冒泡排序了 { strcpy(ts,s[i]); k=i; for(j=i+1;j<=n;j++) { if(strcmp(ts,s[j])<0) { k=j; strcpy(ts,s[j]); } } strcpy(ts,s[i]); strcpy(s[i],s[k]); strcpy(s[k],ts); } for(i=1;i<=n;i++) // 从大到小排序后倒着建边 { len=strlen(s[i]); u=s[i][0]-'a'; v=s[i][len-1]-'a'; smerge(u,v); ss[u][v].insert(s[i]); if(!app[u]) app[u]=1,xxc++; if(!app[v]) app[v]=1,xxc++; out[u]++; in[v]++; addedge(u,v); } if(isok()) // 判断能否形成欧拉路径 { xxs=0; dfs(sx); // dfs找欧拉路径 for(i=xxs;i>1;i--) { u=sta[i]; v=sta[i-1]; s1=*(ss[u][v].begin()); // 用到了set来保证字典序最小 if(i==xxs) cout<<s1; else cout<<"."<<s1; ss[u][v].erase(s1); } printf("\n"); } else printf("***\n"); } return 0; } /* 2 5 aa ab aba ba bb 3 ab ba abca ans: aa.ab.bb.ba.aba ab.ba.abca */