Description
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Output
Sample Input
2 3 3 1 1 2 2 1 3 4 2 3 1 3 1 3 3 2 1 1 2 3 2 3 4 3 1 8
Sample Output
NO YES
Hint
这题第一印象得用Floyd做,死活过不了
转战Bellman-Ford和SPFA,数据有点弱,只用把第一点当做源点即可
还有就是一定要记得写好每条初始化语句,wa了无数次才查出来...
#include <iostream> #include <cstdio> #include <cstring> #include <string> using namespace std; const int INF = 1<<31-1; int n, m, w; int d[550]; int cnt; struct edge{ int u, v, w; }e[6000]; bool bellman(){ int i, j, k; for(i = 1; i <= n; i ++){ d[i] = INF; } d[1] = 0; for(k = 0; k < n-1; k ++){ int flag = 1;// 判断是否松弛完毕 for(i = 1; i <= cnt; i ++){ int x = e[i].u; int y = e[i].v; if(d[x] != INF) if(d[y] > d[x] + e[i].w){ d[y] = d[x] + e[i].w; flag = 0; } } if(flag) break; } for(i = 1; i <= cnt; i ++){ if(d[e[i].v] > d[e[i].u] + e[i].w) return true; //存在负权回路 } return false; } int main(){ int f; int i; cin >> f; while(f -- ){ cnt = 0; scanf("%d %d %d", &n, &m, &w); for(i = 1; i <= m; i ++){ cnt ++; scanf("%d %d %d", &e[cnt].u, &e[cnt].v, &e[cnt].w); cnt ++; e[cnt].u = e[cnt-1].v; e[cnt].v = e[cnt-1].u; e[cnt].w = e[cnt-1].w; } for(i = 1; i <= w; i ++){ cnt ++; scanf("%d %d %d", &e[cnt].u, &e[cnt].v, &e[cnt].w); e[cnt].w = -e[cnt].w; } if(bellman()) printf("YES\n"); else printf("NO\n"); } return 0; }
#include <iostream> #include <cstdio> #include <cstring> #include <string> #include <queue> using namespace std; const int INF = 1<<31-1; int n, m, ww; int d[55000]; int cnt; struct node{ int to; int next;//每次插边的时候是插在已插的边前面,所以已插的边是新边的next int weight; }e[60000]; int lastshow[40000], num[40000]; bool inqueue[40000]; queue<int>q; void insert(int a, int b, int w){ e[++cnt].to = b; e[cnt].weight = w; e[cnt].next = lastshow[a]; lastshow[a] = cnt;//lastshow记录一个点上次作为起点的边的序号,所以一条边的next是它的起点的lastshow值 } bool spfa(){ q.push(1); num[1] ++; while(!q.empty()){ int x = q.front(); q.pop(); inqueue[x] = false; int id = lastshow[x]; while(id != -1){ if(d[x] < INF && d[e[id].to] > e[id].weight + d[x]){ d[e[id].to] = e[id].weight + d[x]; if(!inqueue[e[id].to]){ inqueue[e[id].to] = true; q.push(e[id].to); } num[id]++; if( num[id] > n )//如果入队的次数超过总数,说明存在回路 return true; } id = e[id].next; } } return false; } int main(){ int f; int i; int a, b, w; cin >> f; while(f -- ){ cnt = 0; scanf("%d %d %d", &n, &m, &ww); memset(lastshow,-1,sizeof(lastshow)); memset(inqueue, false, sizeof(inqueue)); memset(num, 0, sizeof(num)); for(i = 1; i <= n; ++ i) d[i]=INF; d[1]=0; cnt=0; while(!q.empty()) { q.pop(); } for(i = 1; i <= m; i ++){ scanf("%d %d %d", &a, &b, &w); insert(a, b, w); insert(b, a, w); } for(i = 1; i <= ww; i ++){ scanf("%d %d %d", &a, &b, &w); insert(a, b, -w); } if(spfa()) printf("YES\n"); else printf("NO\n"); } return 0; }