贝叶斯分类器库源码:
/****************************************************************************************\ * Normal Bayes Classifier * \****************************************************************************************/ /* The structure, representing the grid range of statmodel parameters. It is used for optimizing statmodel accuracy by varying model parameters, the accuracy estimate being computed by cross-validation. The grid is logarithmic, so <step> must be greater then 1. */ class CvMLData; struct CV_EXPORTS CvParamGrid { // SVM params type enum { SVM_C=0, SVM_GAMMA=1, SVM_P=2, SVM_NU=3, SVM_COEF=4, SVM_DEGREE=5 }; CvParamGrid() { min_val = max_val = step = 0; } CvParamGrid( double _min_val, double _max_val, double log_step ) { min_val = _min_val; max_val = _max_val; step = log_step; } //CvParamGrid( int param_id ); bool check() const; double min_val; double max_val; double step; }; class CV_EXPORTS CvNormalBayesClassifier : public CvStatModel { public: CvNormalBayesClassifier(); virtual ~CvNormalBayesClassifier(); CvNormalBayesClassifier( const CvMat* _train_data, const CvMat* _responses, const CvMat* _var_idx=0, const CvMat* _sample_idx=0 ); virtual bool train( const CvMat* _train_data, const CvMat* _responses, const CvMat* _var_idx = 0, const CvMat* _sample_idx=0, bool update=false ); virtual float predict( const CvMat* _samples, CvMat* results=0 ) const; virtual void clear(); #ifndef SWIG CvNormalBayesClassifier( const cv::Mat& _train_data, const cv::Mat& _responses, const cv::Mat& _var_idx=cv::Mat(), const cv::Mat& _sample_idx=cv::Mat() ); virtual bool train( const cv::Mat& _train_data, const cv::Mat& _responses, const cv::Mat& _var_idx = cv::Mat(), const cv::Mat& _sample_idx=cv::Mat(), bool update=false ); virtual float predict( const cv::Mat& _samples, cv::Mat* results=0 ) const; #endif virtual void write( CvFileStorage* storage, const char* name ) const; virtual void read( CvFileStorage* storage, CvFileNode* node ); protected: int var_count, var_all; CvMat* var_idx; CvMat* cls_labels; CvMat** count; CvMat** sum; CvMat** productsum; CvMat** avg; CvMat** inv_eigen_values; CvMat** cov_rotate_mats; CvMat* c; };
测试源码:
//源码引用自:http://blog.csdn.net/carson2005/article/details/6854024# #include "stdafx.h" #include <ml.h> #include <iostream> #include <highgui.h> #include <cv.h> #include <cxcore.h> using namespace cv; using namespace std; //10个样本特征向量维数为12的训练样本集,第一列为该样本的类别标签 double inputArr[10][13] = { 1,0.708333,1,1,-0.320755,-0.105023,-1,1,-0.419847,-1,-0.225806,0,1, -1,0.583333,-1,0.333333,-0.603774,1,-1,1,0.358779,-1,-0.483871,0,-1, 1,0.166667,1,-0.333333,-0.433962,-0.383562,-1,-1,0.0687023,-1,-0.903226,-1,-1, -1,0.458333,1,1,-0.358491,-0.374429,-1,-1,-0.480916,1,-0.935484,0,-0.333333, -1,0.875,-1,-0.333333,-0.509434,-0.347032,-1,1,-0.236641,1,-0.935484,-1,-0.333333, -1,0.5,1,1,-0.509434,-0.767123,-1,-1,0.0534351,-1,-0.870968,-1,-1, 1,0.125,1,0.333333,-0.320755,-0.406393,1,1,0.0839695,1,-0.806452,0,-0.333333, 1,0.25,1,1,-0.698113,-0.484018,-1,1,0.0839695,1,-0.612903,0,-0.333333, 1,0.291667,1,1,-0.132075,-0.237443,-1,1,0.51145,-1,-0.612903,0,0.333333, 1,0.416667,-1,1,0.0566038,0.283105,-1,1,0.267176,-1,0.290323,0,1 }; //一个测试样本的特征向量 double testArr[]= { 0.25,1,1,-0.226415,-0.506849,-1,-1,0.374046,-1,-0.83871,0,-1 }; int _tmain(int argc, _TCHAR* argv[]) { Mat trainData(10, 12, CV_32FC1);//构建训练样本的特征向量 for (int i=0; i<10; i++) { for (int j=0; j<12; j++) { trainData.at<float>(i, j) = inputArr[i][j+1]; } } Mat trainResponse(10, 1, CV_32FC1);//构建训练样本的类别标签 for (int i=0; i<10; i++) { trainResponse.at<float>(i, 0) = inputArr[i][0]; } CvNormalBayesClassifier nbc; bool trainFlag = nbc.train(trainData, trainResponse);//进行贝叶斯分类器训练 if (trainFlag) { cout<<"train over..."<<endl; nbc.save("c:/normalBayes.txt"); } else { cout<<"train error..."<<endl; system("pause"); exit(-1); } CvNormalBayesClassifier testNbc; testNbc.load("c:/normalBayes.txt"); Mat testSample(1, 12, CV_32FC1);//构建测试样本 for (int i=0; i<12; i++) { testSample.at<float>(0, i) = testArr[i]; } float flag = testNbc.predict(testSample);//进行测试 cout<<"flag = "<<flag<<endl; system("pause"); return 0; }
http://blog.csdn.net/carson2005/article/details/6854024
http://blog.csdn.net/godenlove007/article/details/8913007