Given a NxN matrix A, find the Determinant of A % P.
Multiple test cases (the size of input file is about 3MB, all numbers in each matrix are generated randomly).
The first line of every test case contains two integers , representing N (0 < N < 201) and P (0 < P < 1,000,000,001). The following N lines each contain N integers, the j-th number in i-th line represents A[i][j] (- 1,000,000,001 < A[i][j] < 1,000,000,001).
For each test case, print a single line contains the answer.
Input: 1 10 -528261590 2 2 595698392 -398355861 603279964 -232703411 3 4 -840419217 -895520213 -303215897 537496093 181887787 -957451145 -305184545 584351123 -257712188 Output: 0 0 2
Added by: | Bin Jin |
Date: | 2008-07-05 |
Time limit: | 2.541s |
Source limit: | 50000B |
Memory limit: | 1536MB |
Cluster: | Cube (Intel Pentium G860 3GHz) |
Languages: | All except: C++ 4.9 SCM chicken |
Resource: | own problem |
算矩阵对应行列式的值,
/************************************************************************* > File Name: st9.cpp > Author: ALex > Mail: [email protected] > Created Time: 2015年01月29日 星期四 18时58分56秒 ************************************************************************/ #include <map> #include <set> #include <queue> #include <stack> #include <vector> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const double pi = acos(-1); const int inf = 0x3f3f3f3f; const double eps = 1e-15; typedef long long LL; typedef pair <int, int> PLL; const int N = 300; LL mat[N][N]; LL Det (int n, int mod) { for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { mat[i][j] %= mod; } } LL res = 1; for (int i = 0; i < n; ++i) { if (!mat[i][i]) { bool flag = false; for (int j = i + 1; j < n; ++j) { if (mat[j][i]) { flag = true; for (int k = i; k < n; ++k) { swap (mat[i][k], mat[j][k]); } res = -res; break; } } if (!flag) { return 0; } } for (int j = i + 1; j < n; ++j) { while (mat[j][i]) { LL t = mat[i][i] / mat[j][i]; for (int k = i; k < n; ++k) { mat[i][k] = (mat[i][k] - t * mat[j][k]) % mod; swap (mat[i][k], mat[j][k]); } res = -res; } } res = (res * mat[i][i]) % mod; } return (res + mod) % mod; } int main() { int n; LL p; while (~scanf("%d%lld", &n, &p)) { for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { scanf("%lld", &mat[i][j]); } } LL ans = Det (n, p); printf("%lld\n", ans); } return 0; }