LS 15 Divisor counting (Easy)(数论)

Divisor counting (Easy)

Let σ(n) denote the number of divisors of n .

Compute σ(1)+σ(2)++σ(n) .

Input

An integer n .

(1n10 8 )

Output

The sum.

Sample input

5

Sample output

10

思路:

计算 [1, X]区间内所有数字的因子个数之和这个等价于X / 1 + X / 2 + ... + X / X,

         这里注意是整除,直接暴力(O(X)超时),所以就要分段求;

         例如:X/[i………j]==X[k](i<=k)<=j,没必要i……..j都求一次,(详情看代码1)


#include<iostream>
#include<cstring>
using namespace std;
int sum;
int n;
int main()
{ int x;
  while(cin>>n)
  { sum=0;
    for(int i=1;i*i<=n;i++)
    { ///能被i整除的数有多少个
      x=n/i;
      sum+=x;
      if(x^i)
      {///能被x+k[0,z]整除为i的数有多少个
        sum+=i*(x-n/(i+1));
      }
    }
    cout<<sum<<"\n";
  }
}




你可能感兴趣的:(LS 15 Divisor counting (Easy)(数论))