A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
【思路】
设s[i][j] 为从起点到(i,j)位置处的路径数。
通过分析得到:第一行,第一列都为1
到其他位置处(i,j):到达位置(i,j)只能从上面或者左面过来,因此决定到位置(i,j)的路径数由到达上面位置(i-1,j)的路径数和到达左面位置(i,j-1)的路径所决定的。
状态转移方程:
s[i][j] = s[i-1][j] + s[i][j-1]
时间复杂度:O(n^2) 空间复杂度:O(n^2)
class Solution { public: int uniquePaths(int m, int n) { int s[m][n] = {0}; for(int i=0; i < m; i++) { for(int j =0; j < n; j++) { if(i==0 || j==0) s[i][j] =1; else s[i][j]=s[i][j-1]+s[i-1][j]; } } return s[m-1][n-1]; } };