题目链接:Click here~~
题意:
给 n 个以数字构成的串,求这些串能组成的不重复的子串和(前导 0 也算重复)。(Σsi <= 1e5)
解题思路:
主流题解貌似都是用后缀自动机搞的。。。这么高端洋气的数据结构我是不太想学了,SA 就学了好几个月。TAT。
看括号里多么熟悉的条件啊,那就还是先用特殊字符将大家连起来。
(应该用不同的字符隔开,为了方便,我用了相同的字符,代价是开一个pos_end[],记录每个位置所属串的结尾位置)
跑完 height[] 后,还是按照之前的做法,统计不同子串,so 现在的关键问题是,如何在 O(1) 的时间内得到以某一后缀开头为前缀的某一段子串的和。
以字符串 "67890" 为例。
首先我维护一个 sum[] ,记录以字符串起始位置为前缀的子串前缀和。(即sum[0] = 6 , sum[1] = 6+67 , sum[2] = 6+67+678)
假设现在统计 "890" 这个后缀为开头的前缀,要得到 8+89+890 ,但 sum[] 里只保存了从 "6" 开始的和。
用 sum[j] - sum[i] 容易得到 678+6789+67890,然后减去 67*1110 即可。“67” 正是他前面字符串所组成的数字,而 1110 也不是空穴来风。。。
做法很好想了,再开一个 num[] 数组记录当前数字, table[] 记录 11...10 对 2012 的模。
这题调了一晚上加一上午。。。不过样例很强啊,过了就基本 1A 了。
#include <stdio.h> #include <string.h> #include <algorithm> using namespace std; const int N = 2e5 + 5; int sa[N],rank[N],rank2[N],height[N],cnt[N],*x,*y; /* * a radix_sort which is based on the y[]. * how ? ahhhh, the last reverse for is the solution. * and the adjacant value of sa[] might have the same rank. */ void radix_sort(int n,int sz) { memset(cnt,0,sizeof(int)*sz); for(int i=0;i<n;i++) cnt[ x[ y[i] ] ]++; for(int i=1;i<sz;i++) cnt[i] += cnt[i-1]; for(int i=n-1;i>=0;i--) sa[ --cnt[ x[ y[i] ] ] ] = y[i]; } /* * sa[i] represents the ith suffix string is which one. * rank[i] represents the suffix string [i,n]'s rank. * sz is the max_rank of text in that time. * x[] represents the true pointer of rank[] in that time and it may be not unique. * y[] is the location of text[] which is sorted by 2nd key in that time before swap(x,y). */ void get_sa(char text[],int n,int sz=128) { x = rank, y = rank2; for(int i=0;i<n;i++) x[i] = text[i], y[i] = i; radix_sort(n,sz); for(int len=1;len<n;len<<=1) { int yid = 0; for(int i=n-len;i<n;i++) y[yid++] = i; for(int i=0;i<n;i++) if(sa[i] >= len) y[yid++] = sa[i] - len; radix_sort(n,sz); swap(x,y); x[ sa[0] ] = yid = 0; for(int i=1;i<n;i++) { if(y[ sa[i-1] ]==y[ sa[i] ] && sa[i-1]+len<n && sa[i]+len<n && y[ sa[i-1]+len ]==y[ sa[i]+len ]) x[ sa[i] ] = yid; else x[ sa[i] ] = ++yid; } sz = yid + 1; if(sz >= n) break; } for(int i=0;i<n;i++) rank[i] = x[i]; } /* * height[] represents the longest common prefix of suffix [i-1,n] and [i,n]. * height[ rank[i] ] >= height[ rank[i-1] ] - 1. ..... let's call [k,n] is the suffix which rank[k] = rank[i-1] - 1, ...=> [k+1,n] is a suffix which rank[k+1] < rank[i] ..... and the lcp of [k+1,n] and [i,n] is height[ rank[i] ] - 1. ..... still unknow ? height[ rank[i] ] is the max lcp of rank[k] and rank[i] which rank[k] < rank[i]. */ void get_height(char text[],int n) { int k = 0; for(int i=0;i<n;i++) { if(rank[i] == 0) continue; k = max(0,k-1); int j = sa[ rank[i]-1 ]; while(i+k<n && j+k<n && text[i+k]==text[j+k]) k++; height[ rank[i] ] = k; } } const int mod = 2012; char str[N],str2[N]; int pos_end[N],num[N],sum[N],table[N]; int main() { for(int i=1;i<N;i++) table[i] = (table[i-1] * 10 + 10) % mod; int m; while(~scanf("%d",&m)) { int n = 0; while(m--) { scanf("%s",str2); int next_pos = n + strlen(str2) - 1; for(int i=0;str2[i];i++) { num[n+1] = (num[n] * 10 + str2[i] - '0') % mod; sum[n+1] = (sum[n] + num[n+1]) % mod; pos_end[n] = next_pos; str[n++] = str2[i]; } num[n+1] = 0; sum[n+1] = 0; str[n++] = '#'; } str[n] = '\0'; get_sa(str,n); get_height(str,n); int ans = 0; for(int i=0;i<n;i++) { int pos1 = sa[i] + height[i]; int pos2 = pos_end[sa[i]]; if(str[sa[i]] == '#' || str[sa[i]] == '0' || pos1 > pos2) continue; int sum1 = sum[pos1] - sum[sa[i]] - num[sa[i]] * table[pos1-sa[i]]; int sum2 = sum[pos2+1] - sum[sa[i]] - num[sa[i]] * table[pos2-sa[i]+1]; (ans += sum2 - sum1) %= mod; (ans += mod) %= mod; } printf("%d\n",ans); } return 0; }