HDU 4436 str2int(12年天津区域赛-F题-SA|SAM)

题目链接:Click here~~

题意:

给 n 个以数字构成的串,求这些串能组成的不重复的子串和(前导 0 也算重复)。(Σsi <= 1e5)

解题思路:

主流题解貌似都是用后缀自动机搞的。。。这么高端洋气的数据结构我是不太想学了,SA 就学了好几个月。TAT。

看括号里多么熟悉的条件啊,那就还是先用特殊字符将大家连起来。

(应该用不同的字符隔开,为了方便,我用了相同的字符,代价是开一个pos_end[],记录每个位置所属串的结尾位置)

跑完 height[] 后,还是按照之前的做法,统计不同子串,so 现在的关键问题是,如何在 O(1) 的时间内得到以某一后缀开头为前缀的某一段子串的和。

以字符串 "67890" 为例。

首先我维护一个 sum[] ,记录以字符串起始位置为前缀的子串前缀和。(即sum[0] = 6 , sum[1] = 6+67 , sum[2] = 6+67+678)

假设现在统计 "890" 这个后缀为开头的前缀,要得到 8+89+890 ,但 sum[] 里只保存了从 "6" 开始的和。

用 sum[j] - sum[i] 容易得到 678+6789+67890,然后减去 67*1110 即可。“67” 正是他前面字符串所组成的数字,而 1110 也不是空穴来风。。。

做法很好想了,再开一个 num[] 数组记录当前数字, table[] 记录 11...10 对 2012 的模。

这题调了一晚上加一上午。。。不过样例很强啊,过了就基本 1A 了。

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;

const int N = 2e5 + 5;

int sa[N],rank[N],rank2[N],height[N],cnt[N],*x,*y;

/*
    * a radix_sort which is based on the y[].
    * how ? ahhhh, the last reverse for is the solution.
    * and the adjacant value of sa[] might have the same rank.
*/
void radix_sort(int n,int sz)
{
    memset(cnt,0,sizeof(int)*sz);
    for(int i=0;i<n;i++)
        cnt[ x[ y[i] ] ]++;
    for(int i=1;i<sz;i++)
        cnt[i] += cnt[i-1];
    for(int i=n-1;i>=0;i--)
        sa[ --cnt[ x[ y[i] ] ] ] = y[i];
}

/*
    * sa[i] represents the ith suffix string is which one.
    * rank[i] represents the suffix string [i,n]'s rank.
    * sz is the max_rank of text in that time.
    * x[] represents the true pointer of rank[] in that time and it may be not unique.
    * y[] is the location of text[] which is sorted by 2nd key in that time before swap(x,y).
*/
void get_sa(char text[],int n,int sz=128)
{
    x = rank, y = rank2;
    for(int i=0;i<n;i++)
        x[i] = text[i], y[i] = i;
    radix_sort(n,sz);
    for(int len=1;len<n;len<<=1)
    {
        int yid = 0;
        for(int i=n-len;i<n;i++)
            y[yid++] = i;
        for(int i=0;i<n;i++)
            if(sa[i] >= len)
                y[yid++] = sa[i] - len;
        radix_sort(n,sz);
        swap(x,y);
        x[ sa[0] ] = yid = 0;
        for(int i=1;i<n;i++)
        {
            if(y[ sa[i-1] ]==y[ sa[i] ] && sa[i-1]+len<n && sa[i]+len<n && y[ sa[i-1]+len ]==y[ sa[i]+len ])
                x[ sa[i] ] = yid;
            else
                x[ sa[i] ] = ++yid;
        }
        sz = yid + 1;
        if(sz >= n)
            break;
    }
    for(int i=0;i<n;i++)
        rank[i] = x[i];
}

/*
    * height[] represents the longest common prefix of suffix [i-1,n] and [i,n].
    * height[ rank[i] ] >= height[ rank[i-1] ] - 1.
    ..... let's call [k,n] is the suffix which rank[k] = rank[i-1] - 1,
    ...=> [k+1,n] is a suffix which rank[k+1] < rank[i]
    ..... and the lcp of [k+1,n] and [i,n] is height[ rank[i] ] - 1.
    ..... still unknow ? height[ rank[i] ] is the max lcp of rank[k] and rank[i] which rank[k] < rank[i].
*/
void get_height(char text[],int n)
{
    int k = 0;
    for(int i=0;i<n;i++)
    {
        if(rank[i] == 0)
            continue;
        k = max(0,k-1);
        int j = sa[ rank[i]-1 ];
        while(i+k<n && j+k<n && text[i+k]==text[j+k])
            k++;
        height[ rank[i] ] = k;
    }
}

const int mod = 2012;

char str[N],str2[N];

int pos_end[N],num[N],sum[N],table[N];

int main()
{
    for(int i=1;i<N;i++)
        table[i] = (table[i-1] * 10 + 10) % mod;
    int m;
    while(~scanf("%d",&m))
    {
        int n = 0;
        while(m--)
        {
            scanf("%s",str2);
            int next_pos = n + strlen(str2) - 1;
            for(int i=0;str2[i];i++)
            {
                num[n+1] = (num[n] * 10 + str2[i] - '0') % mod;
                sum[n+1] = (sum[n] + num[n+1]) % mod;
                pos_end[n] = next_pos;
                str[n++] = str2[i];
            }
            num[n+1] = 0;
            sum[n+1] = 0;
            str[n++] = '#';
        }
        str[n] = '\0';
        get_sa(str,n);
        get_height(str,n);
        int ans = 0;
        for(int i=0;i<n;i++)
        {
            int pos1 = sa[i] + height[i];
            int pos2 = pos_end[sa[i]];
            if(str[sa[i]] == '#' || str[sa[i]] == '0' || pos1 > pos2)
                continue;
            int sum1 = sum[pos1] - sum[sa[i]] - num[sa[i]] * table[pos1-sa[i]];
            int sum2 = sum[pos2+1] - sum[sa[i]] - num[sa[i]] * table[pos2-sa[i]+1];
            (ans += sum2 - sum1) %= mod;
            (ans += mod) %= mod;
        }
        printf("%d\n",ans);
    }
    return 0;
}


你可能感兴趣的:(HDU 4436 str2int(12年天津区域赛-F题-SA|SAM))