Description
In order to prepare the “The First National ACM School Contest”(in 20??) the major of the city decided to provide all the schools with a reliable source of power. (The major is really afraid of blackoutsJ). So, in order to do that, power station “Future” and one school (doesn’t matter which one) must be connected; in addition, some schools must be connected as well.
You may assume that a school has a reliable source of power if it’s connected directly to “Future”, or to any other school that has a reliable source of power. You are given the cost of connection between some schools. The major has decided to pick out two the cheapest connection plans – the cost of the connection is equal to the sum of the connections between the schools. Your task is to help the major – find the cost of the two cheapest connection plans.
The Input starts with the number of test cases, T (1£T£15) on a line. Then T test cases follow. The first line of every test case contains two numbers, which are separated by a space, N (3£N£100) the number of schools in the city, and M the number of possible connections among them. Next M lines contain three numbers Ai, Bi, Ci , where Ci is the cost of the connection (1£Ci£300) between schools Ai and Bi. The schools are numbered with integers in the range 1 to N.
For every test case print only one line of output. This line should contain two numbers separated by a single space - the cost of two the cheapest connection plans. Let S1 be the cheapest cost and S2 the next cheapest cost. It’s important, that S1=S2 if and only if there are two cheapest plans, otherwise S1£S2. You can assume that it is always possible to find the costs S1 and S2..
Sample Input |
Sample Output |
2 5 8 1 3 75 3 4 51 2 4 19 3 2 95 2 5 42 5 4 31 1 2 9 3 5 66 9 14 1 2 4 1 8 8 2 8 11 3 2 8 8 9 7 8 7 1 7 9 6 9 3 2 3 4 7 3 6 4 7 6 2 4 6 14 4 5 9 5 6 10 |
110 121 37 37 |
Problem source: Ukrainian National Olympiad in Informatics 2001
Problem author: Shamil Yagiyayev
Problem submitter: Dmytro Chernysh
Problem solution: Shamil Yagiyayev, Dmytro Chernysh, K M Hasan
#include<cstdio> #include<cstring> #include<iostream> #include<cmath> #include<queue> #include<algorithm> #define FOR(i,a,b) for(int i=a;i<=b;++i) #define clr(f,z) memset(f,z,sizeof(f)) using namespace std; const int mp=109; const int oo=0x3f3f3f3f; class Edge { public:int u,v,next,w; Edge(){} Edge(int _u,int _v,int _w) {u=_u;v=_v;w=_w;} }; class Graph_tree { public: int head[mp],edge; Edge e[mp*mp*2]; int g[mp][mp]; void clear() { clr(head,-1);edge=0; } void add(int u,int v,int w) { e[edge].v=v;e[edge].w=w;e[edge].next=head[u];head[u]=edge++; } int dis[mp],pre[mp],m,n; int maxcost[mp][mp]; bool vis[mp]; int prim() { int u,v; FOR(i,0,n)dis[i]=oo,vis[i]=0,pre[i]=-1; vis[1]=1; for(int i=head[1];~i;i=e[i].next) { v=e[i].v; if(!vis[v]&&dis[v]>e[i].w) {dis[v]=e[i].w;pre[v]=1; } } int MST=0,MAX,best;dis[1]=0; FOR(i,0,n)FOR(j,0,n)maxcost[i][j]=0; FOR(i,2,n) { MAX=oo;best=-1; FOR(j,1,n) if(!vis[j]&&dis[j]<MAX) MAX=dis[j],best=j; MST+=MAX;vis[best]=1; // if(best==8){puts("+++");cout<<maxcost[7][1]<<endl;} //for(int j=head[best];~j;j=e[j].next) FOR(j,1,n) { v=j; if(vis[v]&&v!=best)///树上最大边 { if(maxcost[v][ pre[best] ]>dis[best]) maxcost[v][best]=maxcost[best][v]=maxcost[v][ pre[best] ]; else maxcost[v][best]=maxcost[best][v]=dis[best]; // printf("max %d %d %d\n",v,best,maxcost[v][best]); } } for(int j=head[best];~j;j=e[j].next) { v=e[j].v; if(!vis[v]&&dis[v]>e[j].w) dis[v]=e[j].w,pre[v]=best; } } return MST; } void getans() { int u,v; int _MST=oo,MST=prim(); FOR(i,1,n) for(int j=head[i];~j;j=e[j].next) { v=e[j].v; if(pre[v]==i||pre[i]==v){continue;} // printf("->%d %d %d\n",i,v,e[j].w);continue;} // printf("%d to %d\n",e[j].w,maxcost[v][i]); _MST=min(_MST,MST+e[j].w-maxcost[v][i]); } // cout<<maxcost[1][8]<<endl; printf("%d %d\n",MST,_MST); } }sp; int main() { int cas,n,m,a,b,c; while(~scanf("%d",&cas)) { while(cas--) { sp.clear(); scanf("%d%d",&n,&m); sp.n=n;sp.m=m; FOR(i,1,m) { scanf("%d%d%d",&a,&b,&c); sp.add(a,b,c);sp.add(b,a,c); sp.g[a][b]=sp.g[b][a]=c; } sp.getans(); } } return 0; }