Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container.
刚开始想到的是动态规划问题,但是,没有重叠的子问题,这显然不是动态规划,看下面简洁的代码:
class Solution { public: int maxArea(vector<int>& height) { /** container的容量遵循以下事实; 1. 最宽的肯定是第一候选人; 2. 如果不宽,那么我们就需要更高的water level; 3. 低的water level我们可以直接删掉 */ int i = 0, j = height.size()-1; int water = 0; while(i < j) { water = max(water, (j-i)*min(height[i], height[j])); if(height[i] < height[j]) i ++; else j --; } return water; /** * 该代码可以改进的地方是,把小于容器中间的所有lower level全部排除,速度会更快。 * */ } };