题意:
给定一个由n个整数组成的整数序列,可以滚动,滚动的意思就是前面k个数放到序列末尾去。问有几种滚动方法使得前面任意个数的和>=0.
思路:
先根据原来的数列求sum数组,找到最低点,然后再以最低点为始点,求解题目答案,(每求解一始点i,符合要求的条件为:sum[i]>=minx,[minx是i<x<=n中的最小值],之所以不用考虑前面的,就是因为我们的预处理是的所有的x<i的sum[x]的值满足sum[x]>=sum[i])
代码如下:
#include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <cstring> #include <cstdlib> #include <stack> #include <queue> #include <vector> #include <algorithm> #include <set> #include <map> #define M 1000005 #define mod 1000000007 #define INF 0x7fffffff #define eps 1e-8 #define LL long long #define LLU unsigned long long using namespace std; int a[M], n, mini; LL sum[M], minx; int main () { while(scanf("%d", &n) && n) { minx = INF; sum[0] = 0; for(int i= 1; i <= n; ++i) { scanf("%d", &a[i]); sum[i] = sum[i-1]+a[i]; if(minx>sum[i]) { minx = sum[i]; mini = i; } } sum[0] = 0; int c = 0; for(int i = mini+1; i <= n; ++i) sum[++c] = sum[c-1]+a[i]; for(int i = 1; i <= mini; ++i) sum[++c] = sum[c-1]+a[i]; minx = sum[n]; int ans = 0; for(int i = n-1; i >= 0; --i) { if(sum[i]<=minx) { ans += 1; minx = sum[i]; } } printf("%d\n", ans); } return 0; }单调队列的思路是比较简单的,
就是确定一个始点以后,然后在队列中找最小的值,满足要求的条件为:minx-sum[i]>=0
代码如下:
#include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <cstring> #include <cstdlib> #include <stack> #include <queue> #include <vector> #include <algorithm> #include <set> #include <map> #define M 1000005 #define mod 1000000007 #define INF 0x7fffffff #define eps 1e-8 #define LL long long #define LLU unsigned long long using namespace std; int n, head, rear, a[M]; LL sum[2*M], deq[2*M]; void insert(int x) { while(head<=rear && sum[deq[rear]]>=sum[x]) --rear; deq[++rear] = x; } LL push(int x) { while(deq[head]<=x-n) ++head; return sum[deq[head]]; } int main () { while(scanf("%d", &n) && n) { head = 1; rear = 0; for(int i = 1; i <= n; ++i) scanf("%d", &a[i]); sum[0] = 0; for(int i = 1; i <= n; ++i) sum[i] = sum[i-1]+a[i]; for(int i = n+1; i <= 2*n; ++i) sum[i] = sum[i-1]+a[i-n]; for(int i = 1; i < n; ++i) insert(i); int ans = 0; for(int i = n; i < 2*n; ++i) { insert(i); if(push(i)-sum[i-n]>=0) ++ans; } printf("%d\n", ans); } return 0; }