什么是位段、位带别名区?
2. 它有什么好处?
答1: 是这样的,记得MCS51吗? MCS51就是有位操作,以一位(BIT)为数据对象的操作,
MCS51可以简单的将P1口的第2位独立操作: P1.2=0;P1.2=1 ; 就是这样把P1口的第三个脚(BIT2)置0置。
而现在STM32的位段、位带别名区就为了实现这样的功能。
对象可以是SRAM,I/O外设空间。实现对这些地方的某一位的操作。
它是这样的。在寻址空间(32位地址是 4GB )另一地方,取个别名区空间,从这地址开始处,每一个字(32BIT)
就对应SRAM或I/O的一位。
这样呢,1MB SRAM就 可以有32MB的对应别名区空间,就是1位膨胀到32位(1BIT 变为1个字)
我们对这个别名区空间开始的某一字操作,置0或置1,就等于它映射的SRAM或I/O相应的某地址的某一位的操作。
答2: 简单来说,可以把代码缩小, 速度更快,效率更高,更安全。
一般操作要6条指令,而使用 位带别名区只要4条指令。
一般操作是 读-改-写 的方式, 而位带别名区是 写 操作。防止中断对读-改-写 的方式的影响。
// STM32支持了位带操作(bit_band),有两个区中实现了位带。其中一个是SRAM 区的最低1MB 范围,第二个则是片内外设
// 区的最低1MB 范围。这两个区中的地址除了可以像普通的RAM 一样使用外,它们还都有自己的“位带别名区”,位带别名区
// 把每个比特膨胀成一个32 位的字。
//
// 每个比特膨胀成一个32 位的字,就是把 1M 扩展为 32M ,
//
// 于是;RAM地址 0X200000000(一个字节)扩展到8个32 位的字,它们是:(STM32中的SRAM依然是8位的,所以RAM中任一地址对应一个字节内容)
// 0X220000000 ,0X220000004,0X220000008,0X22000000C,0X220000010,0X220000014, 0X220000018,0X22000001C
// 支持位带操作的两个内存区的范围是:
// 0x2000_0000‐0x200F_FFFF(SRAM 区中的最低1MB)
// 0x4000_0000‐0x400F_FFFF(片上外设区中的最低1MB)
/*
对SRAM 位带区的某个比特,记它所在字节地址为A,位序号
在别名区的地址为:
AliasAddr= 0x22000000 +((A‐0x20000000)*8+n)*4 =0x22000000+ (A‐0x20000000)*32 + n*4
对于片上外设位带区的某个比特,记它所在字节的地址为A,位序号为n(0<=n<=7),则该比特
在别名区的地址为:
AliasAddr= 0x42000000+((A‐0x40000000)*8+n)*4 =0x42000000+ (A‐0x40000000)*32 + n*4
上式中,“*4”表示一个字为4 个字节,“*8”表示一个字节中有8 个比特。
// 把“位带地址+位序号”转换别名地址宏
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
//把该地址转换成一个指针
#define MEM_ADDR(addr) *((volatile unsigned long *)(addr))
// MEM_ADDR(BITBAND( (u32)&CRCValue,1)) = 0x1;
例如点亮LED
// 使用STM32库
GPIO_ResetBits(GPIOC, GPIO_Pin_4); //关LED5
GPIO_SetBits(GPIOC, GPIO_Pin_7); //开LED2
// 一般读操作
STM32_Gpioc_Regs->bsrr.bit.BR4 =1;// 1:清除对应的ODRy位为0
STM32_Gpioc_Regs->bsrr.bit.BS7 =1;// 1:设置对应的ODRy位为1
//如果使用 位带别名区操作
STM32_BB_Gpioc_Regs->BSRR.BR[4] =1;// 1:清除对应的ODRy位为0
STM32_BB_Gpioc_Regs->BSRR.BS[7] =1;// 1:设置对应的ODRy位为1
代码比STM32库 高效 十倍 !
对内存变量的位操作。
1. // SRAM 变量
2.
3. long CRCValue;
4.
5. // 把“位带地址+位序号”转换别名地址宏
6. #define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
7. //把该地址转换成一个指针
8. #define MEM_ADDR(addr) *((volatile unsigned long *)(addr))
9.
10. // 对32位变量 的BIT1 置 1 :
11.
12. MEM_ADDR(BITBAND( (u32)&CRCValue,1)) = 0x1;
13.
14. //对任意一位( 第23位 ) 判断:
15.
16. if(MEM_ADDR(BITBAND( (u32)&CRCValue,23))==1)
17. {
18.
19. }
bit_band,直译为位带,也翻译成别名存储区。
映射公式:
其中:
bit_word_addr —— bit_band中字的地址,它映射到某个寄存器位。bit_number —— 寄存器位所在位置(0-31)
下面的例1说明,如何将SRAM 地址为0x20000300的字节中的位2映射到别名区中:
0x22006008 = 0x22000000 + (0x300*32) + (2*4).
对0x22006008地址的写操作等同于对SRAM 中地址0x20000300字节的位2 执行读- 改- 写操作。
这个公式照着套用,也没问题。
我比较钻牛角尖,总想弄明白,为什么式1中要乘以32,要乘以4。
记住这个前提:
(1)STM32对bit-band的访问,是以32位的方式来访问,即一次读写32位(Bit),4个字节(STM32是32位的CPU,一次读32位长,速度快,存储空间比51大的多)。
(2)寄存器中的1个位,是使用bit-band中1个双字(32位)来表达的。
先看一个图。
0x20000000的0~7对应0x22000000~0x2200001C,共32个字节,8个双字。
0x20000000的位0对应0x22000000,0x22000001,0x22000002,0x22000003,共4个字节,1个双字
例1中:
0x20000300相对于0x20000000的位移是 0x20000300 - 0x20000000 = 300,相当于300行(ROW)。
乘以32,是因为一行(1个寄存器字节)是32个字节。两者相减,就是它们之间相差的距离,不用担心加1减1的问题。
式1中,bit_number 为什么要乘以4? 这里,寄存器字节中的位相当于列。(如屏幕分辨率1440*900,900是行数,1440是列数,行之间的比例是1,而这里是32)
每列之间相差4个字节:
0x22000004 - 0x22000000 = 4
因为前提(2)。
如例1中,0x22006008~0x2200600B来映射0x20000300的字节中的位2,而实际只有0x22006008的位0表示寄存器位2的状态。
再举例2如:
GPIOA是 0x4001 0800
端口输出数据寄存器(GPIOx_ODR) 的偏移地址是 0x0c
根据公式:别名区 = ADDRESS=0x4200 0000 + (0x0001 080C*0x20) + (bitx*4) ;bitx:第x位
得到PA.0和PA.1的别名区地址
#define PA_Bit0 ((volatile unsigned long *) (0x42210180))
#define PA_Bit1 ((volatile unsigned long *) (0x42210184))
(来源 http://www.amobbs.com/forum.php?mod=viewthread&tid=3861107)
定义成宏,操作就简单了,不用看16进制的8个数字了。