HDU 5421 Victor and String

Problem Description
Victor loves to play with string. He thinks a string is charming as the string is a palindromic string.

Victor wants to play  n  times. Each time he will do one of following four operations.

Operation 1 : add a char  c  to the beginning of the string.

Operation 2 : add a char  c  to the end of the string.

Operation 3 : ask the number of different charming substrings.

Operation 4 : ask the number of charming substrings, the same substrings which starts in different location has to be counted.

At the beginning, Victor has an empty string.
 

Input
The input contains several test cases, at most  5  cases.

In each case, the first line has one integer  n  means the number of operations.

The first number of next  n  line is the integer  op , meaning the type of operation. If  op = 1  or  2 , there will be a lowercase English letters followed.

1n100000 .
 

Output
For each query operation(operation 3 or 4), print the correct answer.
 

Sample Input
   
   
   
   
6 1 a 1 b 2 a 2 c 3 4 8 1 a 2 a 2 a 1 a 3 1 b 3 4
 

Sample Output
   
   
   
   
4 5 4 5 11
 


回文树的巧妙应用,可以双端加入字符,询问回文子串的数量,因为是回文的,只要在原来的回文树基础上添加一个指向前端的指针,然后随时更新即可。

#pragma comment(linker, "/STACK:102400000,102400000")
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<bitset>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<functional>
using namespace std;
typedef long long LL;
const int low(int x) { return x&-x; }
const int INF = 0x7FFFFFFF;
const int maxn = 2e5 + 10;
int T, x;
char ch[2];

struct linklist
{
	int nt[maxn], ft[maxn], u[maxn], v[maxn], sz;
	void clear() { sz = 0; }
	void clear(int x) { ft[x] = -1; }
	int get(int x, int y)
	{
		for (int i = ft[x]; i != -1; i = nt[i])
		{
			if (u[i] == y) return v[i];
		}
		return 0;
	}
	void insert(int x, int y, int z)
	{
		u[sz] = y;	v[sz] = z;
		nt[sz] = ft[x];	ft[x] = sz++;
	}
};

struct PalindromicTree
{
	const static int maxn = 2e5 + 10;
	linklist next;
	LL sz;
	int last[2], tot[2];
	int fail[maxn], len[maxn], cnt[maxn];
	char s[maxn];
	void clear()
	{
		len[1] = -1; len[2] = 0;
		fail[1] = fail[2] = 1;
		cnt[1] = cnt[2] = 0;
		last[0] = last[1] = (sz = 3) - 1;
		tot[0] = (tot[1] = T - 1) + 1;
		next.clear();		next.clear(1);	next.clear(2);
	}
	int Node(int length)
	{
		len[sz] = length;
	    cnt[sz] = 1; 
		next.clear(sz);
		return sz++;
	}
	int getfail(int x, int k)
	{
		s[tot[0] - 1] = s[tot[1] + 1] = 0;
		while (s[tot[k]] != s[tot[k] + (k ? -1 : 1)*(len[x] + 1)]) x = fail[x];
		return x;
	}
	int add(char pos, int k)
	{
		int x = (s[tot[k] += k ? 1 : -1] = pos) - 'a', y = getfail(last[k], k);
		if (!(last[k] = next.get(y, x)))
		{
			next.insert(y, x, last[k] = Node(len[y] + 2));
			fail[last[k]] = len[last[k]] == 1 ? 2 : next.get(getfail(fail[y], k), x);
			cnt[last[k]] += cnt[fail[last[k]]];
			if (len[last[k]] == tot[1] - tot[0] + 1) last[k ^ 1] = last[k];
		}
		return cnt[last[k]];
	}
}solve;

int main()
{
	while (scanf("%d", &T) != EOF)
	{
		LL ans = 0;
		solve.clear();
		while (T--)
		{
			scanf("%d", &x);
			if (x <= 2) 
			{ 
				scanf("%s", ch); 
				ans += solve.add(ch[0], x - 1);
			}
			else
			{
				printf("%lld\n", x == 3 ? solve.sz - 3 : ans);
			}
		}
	}
	return 0;
}


你可能感兴趣的:(HDU)