发现了一种不错的最小流求法。
有源汇的最小流
源点S向每个点连一条容量为(0,inf)的边
每个点向汇点T连一条容量为(0,inf)的边
原图的每条边变成容量为(1,inf)的边
最小流求法:
二分一个答案,每次在S到T间连一条容量为(0,x)的边
判断是否可行
#include<cstdio> #include<cstring> #include<cstdlib> #include<cmath> #include<iostream> #include<algorithm> #define maxn 210 #define maxm 100010 #define inf 1000000000 using namespace std; int head[maxn],to[maxm],c[maxm],next[maxm],q[maxn],d[maxn]; int a[maxn][maxn]; int in[maxn],cnt[maxn]; int s,t,n,m,num,S,T,ans; void addedge(int x,int y,int z) { num++;to[num]=y;c[num]=z;next[num]=head[x];head[x]=num; num++;to[num]=x;c[num]=0;next[num]=head[y];head[y]=num; } bool bfs() { memset(d,-1,sizeof(d)); int l=0,r=1; q[1]=S;d[S]=0; while (l<r) { int x=q[++l]; for (int p=head[x];p;p=next[p]) if (c[p] && d[to[p]]==-1) { d[to[p]]=d[x]+1; q[++r]=to[p]; } } if (d[T]==-1) return 0; else return 1; } int find(int x,int low) { if (x==T || low==0) return low; int totflow=0; for (int p=head[x];p;p=next[p]) if (c[p] && d[to[p]]==d[x]+1) { int a=find(to[p],min(low,c[p])); c[p]-=a;c[p^1]+=a; low-=a;totflow+=a; if (low==0) return totflow; } if (low) d[x]=-1; return totflow; } void Dinic() { int ans=0; while (bfs()) ans+=find(S,inf); } bool check(int x) { num=1;s=0;t=n+1;S=n+2;T=n+3; memset(in,0,sizeof(in)); memset(head,0,sizeof(head)); memset(cnt,0,sizeof(cnt)); addedge(t,s,x); for (int i=1;i<=n;i++) for (int j=1;j<=n;j++) if (a[i][j]) { in[i]--;in[j]++; addedge(i,j,inf); } for (int i=1;i<=n;i++) addedge(s,i,inf),addedge(i,t,inf); for (int i=1;i<=n;i++) if (in[i]>0) cnt[i]=num+1,addedge(S,i,in[i]); else if (in[i]<0) cnt[i]=num+1,addedge(i,T,-in[i]); Dinic(); for (int i=1;i<=n;i++) if (cnt[i] && c[cnt[i]]) return 0; return 1; } int main() { scanf("%d",&n); for (int i=1;i<=n;i++) { int x; scanf("%d",&x); for (int j=1;j<=x;j++) { int x; scanf("%d",&x); a[i][x]=1; } } int l=0,r=n*n,ans; while (l<=r) { int mid=(l+r)/2; if (check(mid)) ans=mid,r=mid-1; else l=mid+1; } printf("%d\n",ans); return 0; }