C语言中断原理简介

系统级C语言程序设计(中断原理简介)  
  摘要:本文主要介绍C语言中中断服务程序的编写、安装和使用。由于硬中断服务程序的编写涉及到硬件端口读写操作,使得用户直接和硬件打交道,在程序设计过程中要用到的数据(如硬件端口地址等)比较多,这就使程序员和计算机的硬件设备间缺少一种“缓冲”的作用,况且,用汇编语言来直接对硬件编程要方便得多。本文仅对软中断程序的编写作个介绍。  
  关键词:软中断、中断向量、中断向量表、TSR内存驻留、DOS重入、中断请求、段地址、偏移量、寄存器、BIOS、DOS、setvect   (   )、getvect   (   )、keep   (   )、disable   (   )、enable   (   )、geninterrupt   (   )、int86   (   )、interrupt  
          对于一般的C语言爱好者而言,就如何在C中使用中断例程这一问题应该已经非常熟悉,例如,我们可以通过int86   (   )函数调用13H号中断直接对磁盘物理扇区进行操作,也可以通过INT86   (   )函数调用33H号中断在屏幕上显示鼠标光标等。其实,13H号也好,33H号也好,它们只不过就是一些函数,这些函数的参数通过CPU的寄存器传递。中断号也只不过是间接地指向函数体的起始内存单元,说它是间接的,也就是说,函数的起始段地址和偏移量是由中断号通过一种方法算得的(具体如何操作,下面会作解释)。如此一来,程序员不必要用太多的时间去写操作硬件的程序了,只要在自己的程序中设置好参数,再调用BIOS或DOS提供的中断服务程序就可以了,大大减小了程序开发难度,缩短了程序开发周期。那么中断既然是函数,就可以由用户任意的调用、由用户任意地编写。  
          计算机内存的前1024个字节(偏移量00000H到003FFH)保存着256个中断向量,每个中断向量占4个字节,前两个字节保存着中断服务程序的入口地址偏移量,后两个字节保存着中断程序的入口段地址,使用时,只要将它们分别调入寄存器IP及CS中,就可以转入中断服务程序实现中断调用。每当中断发生时,CPU将中断号乘以4,在中断向量表中得到该中断向量地址,进而获得IP及CS值,从而转到中断服务程序的入口地址,调用中断。这就是中断服务程序通过中断号调用的基本过程。在计算机启动的时候,BIOS将基本的中断填入中断向量表,当DOS得到系统控制权后,它又要将一些中断向量填入表中,还要修改一部分BIOS的中断向量。有一部分中断向量是系统为用户保留的,如60H到67H号中断,用户可以将自己的中断服务程序写入这些中断向量中。不仅如此,用户还可以自己更改和完善系统已有的中断向量。  
          在C语言中,提供了一种新的函数类型interrupt,专门用来定义中断服务程序,比如我们可以写如下的中断服务程序:  
  /*例1:中断服务程序*/  
  void   interrupt   int60()  
  {  
  puts("This   is   an   example");  
  }  
  该中断的功能就是显示一个字符串,为什么不用printf   (   )函数呢?这就牵涉到DOS的重入问题,后面将作一些介绍。  

         中断服务程序的特点

  中断是嵌入式系统中重要的组成部分,但是在标准C中不包含中断。许多编译开发商在标准C上增加了对中断的支持,提供新的关键字用于标示中断服务程序(ISR),类似于__interrupt、#program interrupt等。当一个函数被定义为ISR的时候,编译器会自动为该函数增加中断服务程序所需要的中断现场入栈和出栈代码。

  中断服务程序需要满足如下要求:

  (1)不能返回值;

  (2)不能向ISR传递参数;

  (3) ISR应该尽可能的短小精悍;

  (4) printf(char * lpFormatString,…)函数会带来重入和性能问题,不能在ISR中采用。


          一个简单的中断服务程序写好了,如何把它的函数入口地址填写到中断向量表中,以便在产生中断的时候能转入中断服务程序去执行呢?这里要用到setvect   (   )和getvect   (   )函数。setvect   (   )有两个参数:中断号和函数的入口地址,其功能是将指定的函数安装到指定的中断向量中,getvect   (   )函数有一个参数:中断号,返回值是该中断的入口地址。在安装中断以前,最好用disable   (   )函数关闭中断,以防止在安装过程中又产生新的中断而导致程序运行混乱,待安装完成后,再用enable   (   )函数开放中断,使程序正常运行。现在我们可以把上面的例子再丰富一下:  
  /*例2:中断服务程序的编写、安装和使用*/  
   
  #include   <dos.h>  
   
  #include   <stdio.h>  
   
  #ifdef   __cplusplus  
   
  #define   __ARGU   ...  
   
  #else  
   
  #define   __ARGU  
   
  #endif  
   
  void   interrupt   int60   (__ARGU)     /*中断服务函数*/  
   
  {  
   
  puts("This   is   an   example");  
   
  }  
   
  void   install   (void   interrupt   (*fadd)(__ARGU),int   num)   /*安装中断*/  
  {  
  disable();   /*关闭中断*/  
  setvect(num,   fadd);   /*设置中断*/  
  enable();   /*开放中断*/  
  }  
  void   main()  
  {  
  install   (int60,0x60);/*将int60函数安装到0x60中断*/  
  geninterrupt   (0x60);   /*人为产生0x60号中断*/  
  }  
  有一定经验的读者很容易得到该程序的执行结果:在屏幕上显示“This   is   an   example!”。  
          编写、安装中断服务程序的方法就介绍这些。下面再浅谈一下内存驻留程序(TSR)的编写和使用。在C语言中,可以用keep   (   )函数将程序驻留内存。这个函数有两个参数:status和size。size为驻留内存长度,可以用size=_SS+_SP/16-_psp得到,当然这也是一种估算的方法,并不是精确值。函数执行完以后,出口状态信息保存在status中。比如,对于上面的例子,将“geninterrupt   (0x60);”改写成“keep(0,_SS+_SP/16-_psp);”后再执行程序,这一段程序就被驻留,此后在其它的任何软件或程序设计中,只要用到了60H号中断,就会在屏幕上显示“This   is   an   example!”的字样。要恢复系统对60H号中断的定义,只能重新启动计算机。  
          像上面的例子其实还很不完善,它没有考虑DOS系统环境的状态、没有考虑程序是否已经驻留内存、没有考虑退出内存驻留等问题。对于第二个问题还是很容易解决的:执行程序一开始就读取某一函数中断入口地址(如63H号中断)判断是否为空(NULL),如果为空就先将该地址置为非空再驻留内存,若为非空则表示已经驻留并退出程序。这一步判断非常重要,否则将会因为重复驻留占用过多内存空间而最后造成系统崩溃。至于其它两个问题,在此不多作说明,有兴趣的读者可以参考一些有关书籍。  
          不仅如此,我们还可以通过在DOS下使用热键(Hotkey)来调用内存驻留程序。比如将《希望汉字系统》自带的《希望词典》驻留内存后,在任意时刻按下Ctrl+F11键,就能激活程序,出现词典界面。微机的键盘中有一个微处理芯片,用来扫描和检测每个按键的按下和释放状态。大多数按键都有一个扫描码,告知CPU当前的状态,但一些特殊的键如PrintScreen、Ctrl+Break等不会产生扫描码,而直接产生中断。正因为如此,我们可以将Ctrl+Break产生的中断号指向我们自己写好的程序入口地址,那么当按下Ctrl+Break后,系统就会调用我们自己的程序去执行,这实际上也就是修改了Ctrl+Break的中断向量。至于其它按键激活程序则可以利用9H号键盘中断捕获的扫描码来实现,在此不多作说明。例如,执行下面的程序后,退回DOS系统,在任意的时候按下Ctrl+Break后,屏幕的底色就会变成红色。  
  /*例3:中断服务程序编写、安装和使用,内存驻留*/  
  #include   <dos.h>  
  #include   <conio.h>  
  #ifdef   __cplusplus  
  #define   __ARGU   ...  
  #else  
  #define   __ARGU  
  #endif  
  void   interrupt   newint(__ARGU);   /*函数声明*/  
  void   install   (void   interrupt   (*fadd)(__ARGU),   int   num);  
  int   main()  
  {  
  install   (newint,0x1b);   /*Ctrl+Break中断号:1BH*/  
  keep(0,_SS+(_SP/16)-_psp);   /*驻留程序*/  
  return   0;  
  }  
  void   interrupt   newint(__ARGU)  
  {  
  textbackground(4);   /*设置屏幕底色为红色*/  
  clrscr();   /*清除屏幕*/  
  }  
  void   install   (void   interrupt   (*fadd)(__ARGU),   int   num)  
  {  
  disable();  
  setvect(num,fadd);   /*设置中断*/  
  enable();  
  }  
          由于13H号中断是BIOS提供的磁盘中断服务程序,对于DOS下的应用程序,它们的存盘、读盘功能都是通过调用这一中断来实现的。有许多DOS下的病毒就喜欢修改13H号中断来破坏系统,例如,修改13H号中断服务程序,将其改成:  
  /*例4:病毒体程序伪代码*/  
  void   interrupt   new13(__ARGU)    
  {  
  if   (病毒发作条件成熟)  
  {   修改入口参数指向病毒程序入口地址;  
      执行病毒代码;  
  }  
  调用原来的13H中断;  
  }  
  只要当任一软件(如EDIT.COM等)对磁盘有操作并且病毒发作条件成熟时,病毒就被激活。当然,这样做会导致可用内存空间减少,容易被用户发现。一些“聪明”的病毒又会去修改其它的中断向量,使得系统报告的内存大小和实际相符合。还有的病毒,当发现用户通过一些程序(如DEBUG.COM等)去跟踪它时,它会悄悄地溜掉,其基本原理仍然与修改中断有关。硬盘的0面0柱1扇区(Side   0   Cylinder   0   Sector   1)保存着重要的引导信息,一旦破坏,计算机将无法识别硬盘。我们可以写一个程序来防止任何软件(包括病毒)对这一扇区执行“写”操作,一定程度上实现了“写保护”的作用,它的基本原理就是修改13H号中断向量并常驻内存,监视着软件(包括病毒)对磁盘操作的每一个细节。读者请注意:本程序没有考虑内存驻留的退出,如果想恢复13H号中断,请重新启动计算机。  

你可能感兴趣的:(C语言中断原理简介)