题意:
n个点 m个询问
下面n个数字表示点权值
n-1行给定一棵树
m个询问 k u v
k为0时把u点权值改为v
或者问 u-v的路径上 第k大的数
思路:
LCA转RMQ求出 LCA(u,v) ;
登山坡式找到路径上所有点并记录其权值
排序输出k大的数
#include<iostream> #include<stdio.h> #include<algorithm> #include<string> #include<queue> #include<string.h> #include<map> #include<set> #include<stack> #include<vector> #include<math.h> #define N 80010 using namespace std; inline int Max(int a,int b){return a>b?a:b;} struct node{ int from, to, nex; }edge[N<<1]; int head[N], edgenum; void addedge(int u, int v){ node E = {u, v, head[u]}; edge[ edgenum ] = E; head[u] = edgenum ++; } int val[N], Stack[N]; int time; int deep[N<<1], index[N<<1], first[N], pre[N]; void DFS(int u, int dep){ deep[time] = u; index[time] =u; time++; for(int i = head[u]; i !=-1; i = edge[i].nex) { int v = edge[i].to; if(first[v] == 0) { first[v] = time; pre[v] = u; DFS(v, dep+1); deep[time] = u; index[time]= u; time++; } } } int dp[N<<1][25]; void RMQ_init(int n){ for(int i = 1; i <= n; i++) dp[i][0] = i; for(int j = 1; (1<<j)<=n;j++) { int k = 1<<(j-1); for(int i = 1; i+k<n; i++) { if(deep[ dp[i][j-1] ] <= deep[ dp[i+k][j-1] ]) dp[i][j] = dp[i][j-1]; else dp[i][j] = dp[i+k][j-1]; } } } int RMQ(int a,int b){ int dis = Max(a-b,b-a) +1; int k = log(double(dis))/ log(2.0); if(deep[dp[a][k]]<= deep[dp[b - (1<<k) +1][k]]) return dp[a][k]; else return dp[b-(1<<k)+1][k]; } int LCA(int u, int v){ int fu = first[u], fv = first[v]; return fu<=fv? index[ RMQ(fu,fv)] : index[ RMQ(fv,fu)]; } int main() { int n, m, i, j, k, que, u, v; int root = 1; while(~scanf("%d%d",&n,&que)) { memset(head, -1, sizeof(head)); edgenum = 0; memset(first, 0, sizeof(first)); for(i=1;i<=n;i++)scanf("%d",&val[i]); for(i=1;i<n;i++) { scanf("%d %d",&u,&v); addedge(u, v); addedge(v, u); } first[root] = 1; time = 1; DFS(root, 0); RMQ_init(time-1); while(que--){ scanf("%d %d %d",&k,&u,&v); if(k==0) {val[u] = v; continue;} if(u==v){ if(k==1)printf("%d\n",val[u]); else printf("invalid request!\n");continue; } int c = LCA(u, v); int top = 0; Stack[top++] = val[c]; while(u!=c) { Stack[top++] = val[u]; u = pre[u]; } while(v!=c) { Stack[top++] = val[v]; v = pre[v]; } if(top<k) {printf("invalid request!\n");continue;} sort(Stack, Stack+top); printf("%d\n",Stack[top - k]); } } return 0; }
8 99 5 2 3 4 5 6 7 8 1 3 1 2 3 4 3 5 5 6 5 7 7 8 1 2 8 2 2 8 3 2 8 4 2 8 5 2 8 6 2 8 7 2 8 1 4 8 4 2 3 5 3 8 2 3 8 0 3 8 2 3 8 3 3 8 2 4 5 1 4 1 2 4 1 3 4 1 ans: 8 7 5 5 3 2 in... 8 in... in... 7 8 7 5 8 5 4 1 1 5 1 1 1 ans: 5 2 2 2 1 1 2 2 2 1 1 1 2 ans: 1 2