目前,android支持一个图形系统,这个图形系统是全局的,surfaceflinger可以访问,其他不通过surfaceflinger进行图形处理的application也可以对其进行操作。
1. FrameBuffer的建立
framebuffer,确切的是说是linux下的framebuffer,,它是linux图形显示系统中一个与图形硬件无关的抽象层,user完全不用考虑我们的硬件设备,而仅仅使用framebuffer就可以实现对屏幕的操作。
android的framebuffer并没有被SurfaceFlinger直接使用,而是在framebuffer外做了一层包装,这个包装就是FramebufferNativeWindow,我们来看一下FramebufferNativeWindow的创建过程。
我们的framebuffer是由一个设备符fbDev来表示的,它是FramebufferNativeWindow的一个成员,我们来分析一下对fbDev的处理过程。
1.1. fbDev设备符
1.1.1 gralloc library
在这之前,先介绍一下gralloc library,它的形态如grallocBOARDPLATFORM.so, BOARDPLATFORM可以从属性ro.board.platform中获得,这篇文章中我们以Qualcomm msmx7x30为例,也就是gralloc.msm7x30.so中,它的源路径在hardware/msm7k/libgralloc-qsd8k。
framebuffer的初始化需要通过HAL gralloc.msm7x30.so 来完成与底层硬件驱动的适配,但是gralloc library并不是平台无关的,不同的vendor可能会实现自己的gralloc library,因此为了保证在创建framebuffer时能够平台无关,android只能是动态的判断并使用当前的gralloc library,android通过从gralloc library中再抽象出一个hw_module_t结构来供使用,它为framebuffer的初始化提供了需要的gralloc.msm7x30.so业务。因此通过这个hw_module_t结构我们就不需要知道当前系统使用的到底是哪个gralloc library。按规定,所有gralloc library中的这个结构体被命名为HAL_MODULE_INFO_SYM(HMI)。当前分析的系统中,HAL_MODULE_INFO_SYM在hardware/msm7k/libgralloc-qsd8k/galloc.cpp。
1.1.2 打开fbDev设备符
下面看如何打开 打开fbDev设备符。通过HAL_MODULE_INFO_SYM提供的gralloc.msm7x30.so的接口我们调用到了fb_device_open()@hardware/msm7k/libgralloc-qsd8kframebuffer.cpp。
- int fb_device_open(hw_module_t const* module, const char* name,
- hw_device_t** device)
- {
- int status = -EINVAL;
- if (!strcmp(name, GRALLOC_HARDWARE_FB0)) {
- alloc_device_t* gralloc_device;
- status = gralloc_open(module, &gralloc_device);
-
-
- fb_context_t *dev = (fb_context_t*)malloc(sizeof(*dev));
- memset(dev, 0, sizeof(*dev));
-
-
- dev->device.common.tag = HARDWARE_DEVICE_TAG;
-
- private_module_t* m = (private_module_t*)module;
- status = mapFrameBuffer(m);
-
- }
在这个函数中,主要为fbDev设备符指定一个fb_context_t实例,并通过函数mapFrameBuffer()对设备节点/dev/graphics/fb0进行操作,操作的目的有:
1.获得屏幕设备的信息,并将屏幕信息保存在HAL_MODULE_INFO_SYM(上面代码中的module)中。
2. 向/dev/graphics/fb0请求page flip模式,page flip模式需要至少2个屏幕大小的buffer,page flip模式在后面介绍。目前android系统中设置为2个屏幕大小的buffer。当然屏幕设备可能不支持page flip模式。
mapFrameBufferLocked()@hardware/msm7k/libgralloc-qsd8k/framebuffer.cpp
-
-
-
- info.yres_virtual = info.yres * NUM_BUFFERS;
-
-
- uint32_t flags = PAGE_FLIP;
- if (ioctl(fd, FBIOPUT_VSCREENINFO, &info) == -1) {
- info.yres_virtual = info.yres;
- flags &= ~PAGE_FLIP;
- LOGW("FBIOPUT_VSCREENINFO failed, page flipping not supported");
- }
3. 映射屏幕设备缓存区给fbDev设备符。
mapFrameBufferLocked()@hardware/msm7k/libgralloc-qsd8k/framebuffer.cpp
-
-
-
-
- int err;
- size_t fbSize = roundUpToPageSize(finfo.line_length * info.yres_virtual);
- module->framebuffer = new private_handle_t(dup(fd), fbSize,
- private_handle_t::PRIV_FLAGS_USES_PMEM);
-
- module->numBuffers = info.yres_virtual / info.yres;
- module->bufferMask = 0;
-
- void* vaddr = mmap(0, fbSize, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
- if (vaddr == MAP_FAILED) {
- LOGE("Error mapping the framebuffer (%s)", strerror(errno));
- return -errno;
- }
- module->framebuffer->base = intptr_t(vaddr);
- memset(vaddr, 0, fbSize);
1.2 grDev设备符
在为framebuffer,也就是FramebufferNativeWindow申请内存之前,我们还要介绍一个概念,就是grDev设备符。它虽然也叫设备符,但是它和具体的设备没有直接关系,我们看它的类型就是知道了alloc_device_t,没错,grDev设备符就是为了FramebufferNativeWindow管理内存使用的。为FramebufferNativeWindow提供了申请/释放内存的接口。
1.3 FramebufferNativeWindow内存管理
FramebufferNativeWindow维护了2个buffer,
- sp<NativeBuffer> buffers[2];
1.3.1 屏幕设备支持page filp模式
目前的android系统默认要求屏幕设备给系统映射2个屏幕大小的缓存区,以便支持page flip模式,如果屏幕设备支持page flip模式,那么
FramebufferNativeWindow中buffers将分别指向一个屏幕大小的屏幕设备缓存区。
-
- intptr_t vaddr = intptr_t(m->framebuffer->base);
- private_handle_t* hnd = new private_handle_t(dup(m->framebuffer->fd), size,
- private_handle_t::PRIV_FLAGS_USES_PMEM |
- private_handle_t::PRIV_FLAGS_FRAMEBUFFER);
-
-
- for (uint32_t i=0 ; i<numBuffers ; i++) {
- if ((bufferMask & (1LU<<i)) == 0) {
- m->bufferMask |= (1LU<<i);
- break;
- }
- vaddr += bufferSize;
- }
-
- hnd->base = vaddr;
- hnd->offset = vaddr - intptr_t(m->framebuffer->base);
- *pHandle = hnd;
1.3.2 屏幕设备不支持page flip模式
在
mapFrameBufferLocked()@hardware/msm7k/libgralloc-qsd8k/framebuffer.cpp中可以得知,如果屏幕设备不支持page flip模式,那么numBuffer值将为1而不是2,那么映射过来的屏幕缓存区将只有一个屏幕大小,不够支持page flip模式,那么此时将不使用这一个屏幕大小的屏幕缓存区,而改为去dev/pmem设备去申请。
gralloc_alloc_framebuffer_locked()@hardware/msm7k/libgralloc-qsd8k/gpu.cpp
- const uint32_t bufferMask = m->bufferMask;
- const uint32_t numBuffers = m->numBuffers;
- const size_t bufferSize = m->finfo.line_length * m->info.yres;
- if (numBuffers == 1) {
-
-
-
- int newUsage = (usage & ~GRALLOC_USAGE_HW_FB) | GRALLOC_USAGE_HW_2D;
- return gralloc_alloc_buffer(bufferSize, newUsage, pHandle);
- }
2. 打开Overlay
同选择gralloc library相似,根据属性值来选择何时的overlay库,如果vendor厂商没有提供overlay库的话,那么系统将使用默认的overlay库overlay.default.so。同样的我们获得overlay库的HAL_MODULE_INFO_SYM结构体,作为系统调用overlay的接口。
- if (hw_get_module(OVERLAY_HARDWARE_MODULE_ID, &module) == 0) {
- overlay_control_open(module, &mOverlayEngine);
- }
3. 选择OpenGL ES library(也即软/硬件加速)
OpenGL (Open Graphics Library)[3] is a standard specification defining a cross-language, cross-platform API for writing applications that produce 2D and 3D computer graphics. The interface consists of over 250 different function calls which can be used to draw complex three-dimensional scenes from simple primitives. OpenGL was developed by Silicon Graphics Inc. (SGI) in 1992[4] and is widely used in CAD, virtual reality, scientific visualization, information visualization, flight simulation, and video games. OpenGL is managed by the non-profit technology consortium Khronos Group.。
android是默认支持OpenGL ES软件加速的,library为libGLES_android,源码路径为frameworks\base\opengl\libagl;如果手机设备支持硬件加速的话,那么复杂的图像处理工作将交由GPU去处理,那么效率将大大提高。但是如果系统真的存在硬件加速,它是如何选择何时用软件加速?何时用硬件加速的呢?
如何查看是否有GPU来实现硬件加速,很容易查看/system/lib/egl/egl.cfg文件内容
- 0 0 android
- 0 1 adreno200
因此只要我们的移动设备芯片集成了GPU,并提供了对应的GL图形库,那么我们就可以在我们的工程中device目录下的egl.cfg文件中加入类似上面的配置,那么我们的系统就会支持硬件加速。
如adreno200 GPU提供的GL图形库:
- libGLESv1_CM_adreno200.so
- libGLESv2_adreno200.so
- libEGL_adreno200.so
那么假如我们的系统中软硬件加速都支持了,那么我们从代码来看能不能让用户自由的选择加速类型,我们带着问题来研究一下代码。
3.1 OpenGL初始化
在调用不管是软件加速的还是硬件加速的OpenGL api之前,我们都需要把软硬两种模式的各自的OpenGL api提取出来,抽象出一个interface来供系统使用,这个过程我称之为OpenGL初始化过程。
软硬两种模式的OpenGL api被分别指定到了一个全局数组的对应位置。
frameworks/base/opengl/libs/EGL/egl.cpp
- static egl_connection_t gEGLImpl[IMPL_NUM_IMPLEMENTATIONS];
- enum {
- IMPL_HARDWARE = 0,
- IMPL_SOFTWARE,
- IMPL_NUM_IMPLEMENTATIONS
- };
gEGLImpl[IMPL_HARDWARE]中保存着硬件图形设备的OpenGL api地址,从
- libGLESv1_CM_adreno200.so
- libGLESv2_adreno200.so
- libEGL_adreno200.so
这3个库中获得;gEGLImpl[IMPL_SOFTWARE]中保存着软件的OpenGL api地址,从libGLES_android.so中获取。
这部分代码在egl_init_drivers_locked()@frameworks/base/opengl/libs/EGL/egl.cpp
3.2 EGL和GLES api
在OpenGL的初始化过程中,OpenGL提供了两套api,分别称为EGL和GLES。android在OPENGL初始化过程中,会将两种不同的接口分开管理,从下面代码中我们可以看到EGL和GLES api地址被存储到了不同的位置。
@frameworks\base\opengl\libs\EGL\Loader.h
- enum {
- EGL = 0x01,
- GLESv1_CM = 0x02,
- GLESv2 = 0x04
- };
load_driver()@frameworks\base\opengl\libs\EGL\Loader.cpp
上面枚举的EGL表示ELG api;GLESvq1_CM表示OpenGL ES 1.0的api;GLESv2表示OpenGL ES 2.0的api。
EGL api地址最终被存储在gEGLImpl[].egl中;
GLESvq1_CM api地址最终被存储在gEGLImpl[].hooks[GLESv1_INDEX]->gl中;
GLESv2 api地址最终被存储在gEGLImpl[].hooks[GLESv2_INDEX]->gl中;
3.2.1 EGL api
EGL is an interface between Khronos rendering APIs such as OpenGL ES or OpenVG and the underlying native platform window system. It handles graphics context management, surface/buffer binding, and rendering synchronization and enables high-performance, accelerated, mixed-mode 2D and 3D rendering using other Khronos APIs.
上面引用了官方的定义,可以看出,EGL是系统和OPENGL ES之间的接口,它的声明在文件frameworks\base\opengl\libs\EGL\egl_entries.in。
3.2.2 GLES
GLES才是真正的OpenGL ES的api,它的声明我们可以在frameworks\base\opengl\libs\entries.in找到。目前的android系统不但将EGL提供给系统使用,同时将GLES也提供给了系统使用,这个我们可以在最开始的显示系统的结构图中可以看到,surfacefliger和framework的opengl模块均可以访问EGL和GLES接口。
3.3 OpenGL config
每个OpenGL库都根据不同的像素格式(pixel format)提供了一系统的config,android根据framebuffer中设置的像素格式来选择合适的config,android根据中各config中的属性信息来创建main surface和openGL上下文。
3.3.1 系统默认pixel format
当前的代码分析是基于gingerbread的,在
mapFrameBufferLocked()@hardware/msm7k/libgralloc-qsd8k/framebuffer.cpp中我们可以找到framebuffer的pixel format的类型
- if(info.bits_per_pixel == 32) {
-
-
-
-
-
-
-
- if (property_get("debug.sf.hw", property, NULL) > 0 && atoi(property) == 0)
- module->fbFormat = HAL_PIXEL_FORMAT_RGBX_8888;
- else if(property_get("debug.composition.type", property, NULL) > 0 && (strncmp(property, "mdp", 3) == 0))
- module->fbFormat = HAL_PIXEL_FORMAT_RGBX_8888;
- else
- module->fbFormat = HAL_PIXEL_FORMAT_RGBA_8888;
- } else {
-
-
-
- module->fbFormat = HAL_PIXEL_FORMAT_RGB_565;
- }
目前的移动设备都是真彩色,所以这里我们认为我们的屏幕设备支持的是HAL_PIXEL_FORMAT_RGBA_8888。
3.3.2 config初始化
所有的OpenGL库提供的config,同样需要将软硬两种模式的各自的OpenGL config提取出来供系统使用,如同OpenGL api地址一样。OpenGL config提取出来后保存在另外一个全局变量
- static egl_display_t gDisplay[NUM_DISPLAYS];
-
- const unsigned int NUM_DISPLAYS = 1;
中,不同于gEGLImpl分开保存软硬件api,所有的config,不论软硬件的,均保存在gDisplay[0],因为所有的config是以屏幕区分的,同一块屏幕应该保存同一份config信息。
在提取出的openGL的config时,会保存到gDisplay[0].config中,在这儿有一个很tricky的实现,它保证了硬件加速器的优先使用!
- <strong> </strong>
- qsort( dp->configs,
- dp->numTotalConfigs,
- sizeof(egl_config_t), cmp_configs);<strong>
- </strong>
最终,上述代码会将
gDisplay[0].config中的配置按照先硬件的,后软件的规则做一个总体的排序。
代码在eglInitialize()@frameworks/base/opengl/libs/EGL/egl.cpp
3.3.3 config选择
上文说到,android会根据framebuffer的pixel format信息来获取对应的config,这个过程只选择一个合适的config,选到为止。
3.3.3.1 满足属性要求
并不是所有的config都可以被选择,首先这个config的属性需要满足
init()@DisplayHardware.cpp
-
- EGLint attribs[] = {
- EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
- EGL_NONE, 0,
- EGL_NONE
- };
3.3.3.2 满足RGBA要求
在pixelflinger中,为系统提供了各个pixel format的基本信息,RGBA值,字节数/pixel,位数/pixel。
system/core/libpixelflinger/format.cpp
- static GGLFormat const gPixelFormatInfos[] =
- {
- { 0, 0, {{ 0, 0, 0, 0, 0, 0, 0, 0 }}, 0 },
- { 4, 32, {{32,24, 8, 0, 16, 8, 24,16 }}, GGL_RGBA },
android会根据
pixelflinger的pixel format信息,去和openGL的config比较,得到想要的config。
selectConfigForPixelFormat()@frameworks/base/libs/ui/EGLUtils.cpp
- EGLConfig* const configs = (EGLConfig*)malloc(sizeof(EGLConfig)*numConfigs);
- if (eglChooseConfig(dpy, attrs, configs, numConfigs, &n) == EGL_FALSE) {
- free(configs);
- return BAD_VALUE;
- }
-
- const int fbSzA = fbFormatInfo.getSize(PixelFormatInfo::INDEX_ALPHA);
- const int fbSzR = fbFormatInfo.getSize(PixelFormatInfo::INDEX_RED);
- const int fbSzG = fbFormatInfo.getSize(PixelFormatInfo::INDEX_GREEN);
- const int fbSzB = fbFormatInfo.getSize(PixelFormatInfo::INDEX_BLUE);
-
- int i;
- EGLConfig config = NULL;
- for (i=0 ; i<n ; i++) {
- EGLint r,g,b,a;
- EGLConfig curr = configs[i];
- eglGetConfigAttrib(dpy, curr, EGL_RED_SIZE, &r);
- eglGetConfigAttrib(dpy, curr, EGL_GREEN_SIZE, &g);
- eglGetConfigAttrib(dpy, curr, EGL_BLUE_SIZE, &b);
- eglGetConfigAttrib(dpy, curr, EGL_ALPHA_SIZE, &a);
- if (fbSzA <= a && fbSzR <= r && fbSzG <= g && fbSzB <= b) {
- config = curr;
- break;
- }
- }
4. 创建main surface
要让OpenGL进行图形处理,那么需要在OpenGL中创建一个openGL surface。代码在eglCreateWindowSurface()@
frameworks/base/opengl/libs/EGL/egl.cpp
调用当前的config所处的openGL库的api来创建surface。通过validate_display_config()方法来获取当前config的openGL api。
创建的surface会和FramebufferNativeWindow关联到一起。
5. 创建 OpenGL ES 上下文
An OpenGL context represents many things. A context stores all of the state associated with this instance of OpenGL. It represents the (potentially visible) default framebufferthat rendering commands will draw to when not drawing to a framebuffer object. Think of a context as an object that holds all of OpenGL; when a context is destroyed, OpenGL is destroyed.
http://www.opengl.org/wiki/OpenGL_context
具体的创建过程专业术语太多,也没有仔细研究不再介绍。
6. 绑定context和surface
有了surface,有了
FramebufferNativeWindow,有了context,基本上与图形系统相关的概念都有了,下一步就是把这几个概念关联起来,在创建surface时已经将surface和FramebufferNativeWindow关联了起来。
eglMakeCurrent()@
frameworks/base/opengl/libs/EGL/egl.cpp
6.1 多线程支持
OpenGL 提供了多线程的支持,有以下2点的支持:
1. 一个Context只能被一个线程使用,不能存在多个线程使用同一个context。因此在多线层操作中使用到了TLS技术,即Thread-local storage,来保证context被唯一使用。
makeCurrent()@frameworks/base/opengl/libs/libagl/egl.cpp
- ogles_context_t* current = (ogles_context_t*)getGlThreadSpecific();
- if (gl) {
- egl_context_t* c = egl_context_t::context(gl);
- if (c->flags & egl_context_t::IS_CURRENT) {
- if (current != gl) {
-
-
- return -1;
- }
- } else {
- if (current) {
-
- glFlush();
- egl_context_t::context(current)->flags &= ~egl_context_t::IS_CURRENT;
- }
- }
- if (!(c->flags & egl_context_t::IS_CURRENT)) {
-
- setGlThreadSpecific(gl);
- c->flags |= egl_context_t::IS_CURRENT;
- }
2. 在同一进程中,对于不同的线程对OpenGL库的访问,可能使用的GLES api version不同,同样可以使用TLS技术来保证多线程过程中,不同线程调用各自的GLES api。
前面我们介绍过GLES api地址被存放在gEGLImpl[].hooks[VERSION]->gl中,因此为保证多线程支持,android将gEGLImpl[].hooks[VERSION]保存到了TLS中,这样就实现了不同线程各自调用各自版本的GLES api。
eglMakeCurrent()@frameworks/base/opengl/libs/EGL/egl.cpp
-
- if (ctx != EGL_NO_CONTEXT) {
- setGlThreadSpecific(c->cnx->hooks[c->version]);
- setContext(ctx);
- _c.acquire();
- } else {
- setGlThreadSpecific(&gHooksNoContext);
- setContext(EGL_NO_CONTEXT);
- }
尽管openGL 实现了多线程的支持,目前我从代码中别没有找到多线程的使用。
6.2 设置surface和context之间的关系
由于vendor厂商提供的GPU的GLES库是不可见的,因此以libGLES_android.so软件加速为例来说明这个过程。
contex中保存着两个surface,read和draw,多少情况下这两个surface为同一个surface。
设置FramebufferNativeWindow中Buffers[2]之一为surface的数据区, 通过connect()和bindDrawSurface()。最终的形态如下图所示:
在init()@DisplayHardware.cpp中,在绑定surface和context之后,马上在当前线程中unbind了context,通过
-
- eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
这么做的目的应该是支持多display系统中的特殊处理,目的是当系统有多个display系统的话,那么surfaceflinger就会去定义多个
DisplayHardware对象,那么为了保证下一个DisplayHardware对象的创建不受影响,在当前的DisplayHardware创建完成后,将context从当前的进程中unbind掉。
不过没关系,在所有的DisplayHardware创建完成之后,surfaceflinger会重新bind 主Display系统的context和surface。
readyToRun()@SurfaceFlinger.cpp
-
-
-
-
- const GraphicPlane& plane(graphicPlane(dpy));
- const DisplayHardware& hw = plane.displayHardware();
- const uint32_t w = hw.getWidth();
- const uint32_t h = hw.getHeight();
- const uint32_t f = hw.getFormat();
- hw.makeCurrent();
下图为这个图形系统的类图结构。