最近点对
2 0 0 1 1 2 1 1 1 1 3 -1.5 0 0 0 0 1.5 0
0.71 0.00 0.75
解题思路:开始用暴力依次遍历每一个点对做了一遍提交,返回一个TLE。后来发现其实排序之后只要把每个点后面的十个点遍历一下就行,这样在很大程度上节省了时间。虽然这个方法看起来挺奇怪的。但是后来我在黑书《算法导论》第八章看到了这种方法,并且上面证明了这种方法的正确性。其实排序后只要遍历每个点之后的七个点就行了。还有其他的方法,太懒了,没有去写。
#include<cstdio> #include<cstring> #include<cstdlib> #include<cmath> #include<iostream> #include<algorithm> using namespace std; struct point { double x,y; }p[100010]; bool cmp(point a,point b) { if(a.x<b.x) return true; if(a.x==b.x) if(a.y<b.y) return true; return false; } int main() { int n; while(~scanf("%d",&n)) { if(n==0)break; double min=9999999; for(int i=0;i<n;i++) { scanf("%lf%lf",&p[i].x,&p[i].y); } sort(p,p+n,cmp); for(int i=0;i<n;i++) { for(int j=i+1;j<i+10&&j<n;j++) { double len; len=sqrt((p[i].x-p[j].x)*(p[i].x-p[j].x)+(p[i].y-p[j].y)*(p[i].y-p[j].y)); if(len<min) min=len; } } printf("%.2lf\n",double(min/2.0)); } return 0; }
#include<cstdio> #include<cstring> #include<cstdlib> #include<cmath> #include<iostream> #include<algorithm> using namespace std; const int N = 100005; const double MAX = 10e100, eps = 0.00001; struct Point { double x, y; int index; }; Point a[N], b[N], c[N]; double closest(Point *, Point *, Point *, int, int); double dis(Point, Point); int cmp_x(const void *, const void*); int cmp_y(const void *, const void*); int merge(Point *, Point *, int, int, int); inline double min(double, double); int main(){ int n, i; double d; while (~scanf("%d", &n)) { if(!n)break; for (i = 0; i < n; i++) scanf("%lf%lf", &(a[i].x), &(a[i].y)); qsort(a, n, sizeof(a[0]), cmp_x); for (i = 0; i < n; i++) a[i].index = i; memcpy(b, a, n *sizeof(a[0])); qsort(b, n, sizeof(b[0]), cmp_y); d = closest(a, b, c, 0, n - 1); printf("%.2lf\n", d/2.0); } return 0; } double closest(Point a[],Point b[],Point c[],int p,int q){ if (q - p == 1) return dis(a[p], a[q]); if (q - p == 2) { double x1 = dis(a[p], a[q]); double x2 = dis(a[p + 1], a[q]); double x3 = dis(a[p], a[p + 1]); if (x1 < x2 && x1 < x3) return x1; else if (x2 < x3) return x2; else return x3; } int i, j, k, m = (p + q) / 2; double d1, d2; for (i = p, j = p, k = m + 1; i <= q; i++) if (b[i].index <= m) c[j++] = b[i]; //数组c左半部保存划分后左部的点, 且对y是有序的. else c[k++] = b[i]; d1 = closest(a, c, b, p, m); d2 = closest(a, c, b, m + 1, q); double dm = min(d1, d2); //数组c左右部分分别是对y坐标有序的, 将其合并到b. merge(b, c, p, m, q); for (i = p, k = p; i <= q; i++) if (fabs(b[i].x - b[m].x) < dm) c[k++] = b[i]; //找出离划分基准左右不超过dm的部分, 且仍然对y坐标有序. for (i = p; i < k; i++) for (j = i + 1; j < k && c[j].y - c[i].y < dm; j++){ double temp = dis(c[i], c[j]); if (temp < dm) dm = temp; } return dm; } double dis(Point p, Point q){ double x1 = p.x - q.x, y1 = p.y - q.y; return sqrt(x1 *x1 + y1 * y1); } int merge(Point p[], Point q[], int s, int m, int t){ int i, j, k; for (i=s, j=m+1, k = s; i <= m && j <= t;) { if (q[i].y > q[j].y) p[k++] = q[j], j++; else p[k++] = q[i], i++; } while (i <= m) p[k++] = q[i++]; while (j <= t) p[k++] = q[j++]; memcpy(q + s, p + s, (t - s + 1) *sizeof(p[0])); return 0; } int cmp_x(const void *p, const void *q){ double temp = ((Point*)p)->x - ((Point*)q)->x; if (temp > 0) return 1; else if (fabs(temp) < eps) return 0; else return - 1; } int cmp_y(const void *p, const void *q){ double temp = ((Point*)p)->y - ((Point*)q)->y; if (temp > 0) return 1; else if (fabs(temp) < eps) return 0; else return - 1; } inline double min(double p, double q) { return (p > q) ? (q): (p); }