hdu1845Jimmy’s Assignment


Problem Description
Jimmy is studying Advanced Graph Algorithms at his university. His most recent assignment is to find a maximum matching in a special kind of graph. This graph is undirected, has N vertices and each vertex has degree 3. Furthermore, the graph is 2-edge-connected (that is, at least 2 edges need to be removed in order to make the graph disconnected). A matching is a subset of the graph’s edges, such that no two edges in the subset have a common vertex. A maximum matching is a matching having the maximum cardinality.
  Given a series of instances of the special graph mentioned above, find the cardinality of a maximum matching for each instance.
 

Input
The first line of input contains an integer number T, representing the number of graph descriptions to follow. Each description contains on the first line an even integer number N (4<=N<=5000), representing the number of vertices. Each of the next 3*N/2 lines contains two integers A and B, separated by one blank, denoting that there is an edge between vertex A and vertex B. The vertices are numbered from 1 to N. No edge may appear twice in the input.
 

Output
For each of the T graphs, in the order given in the input, print one line containing the cardinality of a maximum matching.
 

Sample Input
   
   
   
   
2 4 1 2 1 3 1 4 2 3 2 4 3 4 4 1 2 1 3 1 4 2 3 2 4 3 4
 

Sample Output
   
   
   
   
2 2
 

传说中的水题就是这样的,测试模板。


#include<map>  
#include<set>  
#include<list>  
#include<queue>  
#include<stack>  
#include<vector>  
#include<cmath>  
#include<cstdio>  
#include<string>  
#include<iostream>  
#include<algorithm>  
#include<iterator>  
  
using namespace std;  
  
const int maxn=5060;  
  
struct node  
{  
    int to;  
    int next;  
}edge[maxn*maxn];  
int head[maxn];  
int mark[maxn];  
bool used[maxn];  
int tot;  
int n;  
  
struct node2  
{  
    int t;  
    int a,b,c,d;  
}p[maxn];  
  
void addedge(int from,int to)  
{  
    edge[tot].to=to;  
    edge[tot].next=head[from];  
    head[from]=tot++;  
}  
  
bool dfs(int x)  
{  
    for(int i=head[x];i!=-1;i=edge[i].next)  
    {  
        if(!used[edge[i].to])  
        {  
            used[edge[i].to]=1;  
            if(mark[edge[i].to]==-1 || dfs(mark[edge[i].to]))  
            {  
                mark[edge[i].to]=x;  
                return true;  
            }  
        }  
    }  
    return false;  
}  
  
int hungary()  
{  
    memset(mark,-1,sizeof(mark));  
    int ans=0;  
    for(int i=1;i<=n;i++)  
    {  
        memset(used,0,sizeof(used));  
        if(dfs(i))  
          ans++;  
    }  
    return ans;  
}

int main()
{
	int t,x,y;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d",&n);
		memset(head,-1,sizeof(head));
		tot=0;
		for(int i=1;i<=3*n/2;i++)
		{
			scanf("%d%d",&x,&y);
			addedge(x,y);
			addedge(y,x);
		}
		printf("%d\n",hungary()/2);
	}
	return 0;
}


你可能感兴趣的:(匹配)