边双连通模版

边双连通模版_第1张图片

只有一个边双连通:{1,2,3,4,5}

去掉桥,每块缩为一个点

调用方法:

init();

solve(int l, int r){}; [l, r] 是点标

suodian();

双连通 缩点 求桥模版:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <queue>
#include <vector>
using namespace std;
#define N 100005
#define M 200300
#define inf 10000000
struct Edge{
	int from,to,next;
	bool cut;
}edge[2*M];
int head[N],edgenum;
int Low[N],DFN[N],Stack[N];//Belong数组的值是1~block
int Index,top;
int Belong[N],block;//新图的连通块标号(1~block)
bool Instack[N];
int bridge; //割桥数量

void addedge(int u,int v){
	Edge E={u,v,head[u],0}; edge[edgenum]=E; head[u] = edgenum++;
	Edge E2={v,u,head[v],0};edge[edgenum]=E2;head[v] = edgenum++;
}
void Tarjan(int u,int pre){
	int v;
	Low[u] = DFN[u] = ++Index;
	Stack[top++] = u;
	Instack[u] = true;
	for(int i = head[u]; ~i ;i = edge[i].next){
		v = edge[i].to;
		// 如果重边有效的话下面这句改成: if(v == pre && pre_num == 0){pre_num++;continue;} pre_num在for上面定义 int pre_num=0;
		if( v == pre )continue;
		if( !DFN[v] ){
			Tarjan(v,u);
			Low[u] = min(Low[u], Low[v]);
			if(Low[v] > DFN[u]){
				bridge++;
				edge[i].cut = true;
				edge[i^1].cut = true;
			}
		}
		else if(Instack[v])Low[u] = min(Low[u], DFN[v]);
	}
	if(Low[u] == DFN[u]){
		block++;
		do{
			v = Stack[--top];
			Instack[v] = false;
			Belong[v] = block;
		}while( v != u );
	}
}
void work(int l, int r){
	memset(DFN,0,sizeof(DFN));
	memset(Instack,false,sizeof(Instack));
	Index = top = block = bridge = 0;
	for(int i = l; i <= r; i++)if(!DFN[i])Tarjan(i,i);
}
vector<int>G[N];//点标从1-block
void suodian(){
	for(int i = 1; i <= block; i++)G[i].clear();
	for(int i = 0; i < edgenum; i+=2){
		int u = Belong[edge[i].from], v = Belong[edge[i].to];
		if(u==v)continue;
		G[u].push_back(v), G[v].push_back(u);
	}
}
void init(){edgenum = 0; memset(head,-1,sizeof(head));}


求割点和桥 (binshen模版)

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int INF = 0x3f3f3f3f;
/*
*  求 无向图的割点和桥
*  可以找出割点和桥,求删掉每个点后增加的连通块。
*  需要注意重边的处理,可以先用矩阵存,再转邻接表,或者进行判重
*/
#define N 10005
#define M 200010
struct Edge{
    int to,next,w;
    bool cut;//是否为桥的标记
}edge[M*2];
int head[N],edgenum;
int Low[N],DFN[N],Stack[N],Index,top;
bool Instack[N];
bool cut[N]; //是否为割点
int add_block[N];//删除i点后增加的连通块数量为add_block[i]
int bridge;  //桥数量

void addedge(int u,int v,int w)
{
    edge[edgenum].to = v;edge[edgenum].next = head[u];edge[edgenum].cut = false;
    edge[edgenum].w = w;
    head[u] = edgenum++;
    edge[edgenum].to = u;edge[edgenum].next = head[v];edge[edgenum].cut = false;
    edge[edgenum].w = w;
    head[v] = edgenum++;
}
void Tarjan(int u,int pre){
    int v;
    Low[u] = DFN[u] = ++Index;
    Stack[top++] = u;
    Instack[u] = true;
    int son = 0;
    int pre_num = 0;
    for(int i = head[u];i != -1;i = edge[i].next)
    {
        v = edge[i].to;
		//若重边无效则把下面这句换成 if(v == pre)continue;
        if(v == pre && pre_num == 0){pre_num++;continue;}
        if( !DFN[v] )
        {
            son++;
            Tarjan(v,u);
            if(Low[u] > Low[v])Low[u] = Low[v];
            //桥
            //一条无向边(u,v)是桥,当且仅当(u,v)为树枝边,且满足DFS(u)<Low(v)。
            if(Low[v] > DFN[u])
            {
                bridge++;
                edge[i].cut = true;
                edge[i^1].cut = true;
            }
            //割点
            //一个顶点u是割点,当且仅当满足(1)或(2) (1) u为树根,且u有多于一个子树。
            //(2) u不为树根,且满足存在(u,v)为树枝边(或称父子边,
            //即u为v在搜索树中的父亲),使得DFS(u)<=Low(v)
            if(u != pre && Low[v] >= DFN[u])//不是树根
            {
                cut[u] = true;
                add_block[u]++;
            }
        }
        else if( Low[u] > DFN[v])
             Low[u] = DFN[v];
    }
    //树根,分支数大于1
    if(u == pre && son > 1)cut[u] = true;
    if(u == pre)add_block[u] = son - 1;
    Instack[u] = false;
    top--;
}
void solve(int l, int r){ //点标区间为[l,r]
    memset(DFN,0,sizeof(DFN));
    memset(Instack,false,sizeof(Instack));
    memset(add_block,0,sizeof(add_block));
    memset(cut,false,sizeof(cut));
    Index = top = bridge = 0;
    for(int i = l;i <= r;i++)if(!DFN[i])Tarjan(i,i);
}
void init(){ edgenum = 0;  memset(head,-1,sizeof(head));}




模版1:重边有效 白书模版:

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<vector>
#include<math.h>
#include<queue>
#include<set>
using namespace std;
#define N 10050
#define M 200005

int n,m;//n个点 m条边 点标从1开始
struct Edge{
	int from,to,val,nex;
	bool cut;//记录这条边是否为割边 
}edge[2*M];//双向边则 edge[i]与edge[i^1]是2条反向边
int head[N],edgenum;//在一开始就要 memset(head,-1,sizeof(head)); edgenum=0;
int low[N],dfn[N],tarjin_time;
void add(int u,int v,int w){
	Edge E={u,v,w,head[u],0};
	edge[edgenum]=E;
	head[u]=edgenum++;
	Edge E2={v,u,w,head[v],0};
	edge[edgenum]=E2;
	head[v]=edgenum++;
}
void tarjin(int u,int pre)
{
	low[u]=dfn[u]= ++tarjin_time;
	int flag=1;//flag是阻止双向边的反向边 i和i^1
	for(int i=head[u];i!=-1;i=edge[i].nex)
	{
		int v=edge[i].to;
		if(flag&&v==pre)
		{
			flag=0;
			continue;
		}
		if(!dfn[v])
		{
			tarjin(v,u);
			if(low[u]>low[v])low[u]=low[v];
			if(low[v]>dfn[u])//是桥low[v]表示v能走到的最早祖先 有重边且u是v的最早祖先 则low[v]==dfn[u],所以不会当作桥
				edge[i].cut=edge[i^1].cut=true;
		}
		else if(low[u]>dfn[v])low[u]=dfn[v];
	}
}
void find_edgecut()
{
	memset(dfn,0,sizeof(dfn));
	tarjin_time=0;
	for(int i=1;i<=n;i++)if(!dfn[i])tarjin(i,i);
}
void init(){memset(head, -1, sizeof head); edgenum = 0;}


重边算1条:

#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#include <vector>
using namespace std;

/*
*  求 无向图的割点和桥
*  可以找出割点和桥,求删掉每个点后增加的连通块。
*  这个模版是重边算1条
*/
const int MAXN = 10010;
const int MAXM = 100010;
struct Edge{
    int to,next;
    bool cut;//是否为桥的标记
}edge[MAXM*2];
int head[MAXN],edgenum;
int Low[MAXN],DFN[MAXN],Stack[MAXN];
int Index,top;
bool Instack[MAXN];
bool cut[MAXN]; //点是否为割点
int add_block[MAXN];//删除一个点后增加的连通块
int bridge;
void add(int u,int v){
    edge[edgenum].to = v;edge[edgenum].next = head[u];edge[edgenum].cut = false;
    head[u] = edgenum++;
    edge[edgenum].to = u;edge[edgenum].next = head[v];edge[edgenum].cut = false;
    head[v] = edgenum++;
}
void Tarjan(int u,int pre){
    int v;
    Low[u] = DFN[u] = ++Index;
    Stack[top++] = u;
    Instack[u] = true;
    int son = 0;
    for(int i = head[u];i != -1;i = edge[i].next)
    {
        v = edge[i].to;
        if(v == pre)continue;
        if( !DFN[v] )
        {
            son++;
            Tarjan(v,u);
            if(Low[u] > Low[v])Low[u] = Low[v];
            //桥
            //一条无向边(u,v)是桥,当且仅当(u,v)为树枝边,且满足DFS(u)<Low(v)。
            if(Low[v] > DFN[u])
            {
                bridge++;
                edge[i].cut = true;
                edge[i^1].cut = true;
            }
            //割点
            //一个顶点u是割点,当且仅当满足(1)或(2) (1) u为树根,且u有多于一个子树。
            //(2) u不为树根,且满足存在(u,v)为树枝边(或称父子边,
            //即u为v在搜索树中的父亲),使得DFS(u)<=Low(v)
            if(u != pre && Low[v] >= DFN[u])//不是树根
            {
                cut[u] = true;
                add_block[u]++;
            }
        }
        else if( Low[u] > DFN[v])
             Low[u] = DFN[v];
    }
    //树根,分支数大于1
    if(u == pre && son > 1)cut[u] = true;
    if(u == pre)add_block[u] = son - 1;
    Instack[u] = false;
    top--;
}

void solve(int n){
    memset(DFN,0,sizeof(DFN));
    memset(Instack,false,sizeof(Instack));
    memset(add_block,0,sizeof(add_block));
    memset(cut,false,sizeof(cut));
    Index = top = 0;
    bridge = 0;
    for(int i = 1;i <= n;i++)if(!DFN[i]) Tarjan(i,i);
}
void init(){edgenum = 0; memset(head,-1,sizeof(head));}


 

你可能感兴趣的:(边双连通模版)