Trie树|字典树的简介及实现(转)

Trie树|字典树的简介及实现(转)
Trie,又称字典树、单词查找树,是一种树形结构,用于保存大量的字符串。它的优点是:利用字符串的公共前缀来节约存储空间。
相对来说,Trie树是一种比较简单的数据结构.理解起来比较简单,正所谓简单的东西也得付出代价.故Trie树也有它的缺点,Trie树的内存消耗非常大.当然,或许用左儿子右兄弟的方法建树的话,可能会好点.

其基本性质可以归纳为:
1. 根节点不包含字符,除根节点外每一个节点都只包含一个字符。 
2. 从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串。 
3. 每个节点的所有子节点包含的字符都不相同。

其基本操作有:查找 插入和删除,当然删除操作比较少见.我在这里只是实现了对整个树的删除操作,至于单个word的删除操作也很简单.

搜索字典项目的方法为:

(1) 从根结点开始一次搜索;

(2) 取得要查找关键词的第一个字母,并根据该字母选择对应的子树并转到该子树继续进行检索;

(3) 在相应的子树上,取得要查找关键词的第二个字母,并进一步选择对应的子树进行检索。
(4) 迭代过程……
(5) 在某个结点处,关键词的所有字母已被取出,则读取附在该结点上的信息,即完成查找。
其他操作类似处理.

Trie树|字典树的简介及实现(转)_第1张图片

 

/*
Name: Trie树的基本实现 
Author: MaiK 
Description: Trie树的基本实现 ,包括查找 插入和删除操作
*/

#include
< algorithm >
#include
< iostream >
using   namespace  std;

const   int  sonnum = 26 , base = ' a ' ;
struct  Trie
{
    
int num;//to remember how many word can reach here,that is to say,prefix
    bool terminal;//If terminal==true ,the current point has no following point
    struct Trie *son[sonnum];//the following point
}
;
Trie 
* NewTrie() //  create a new node
{
    Trie 
*temp=new Trie;
    temp
->num=1;temp->terminal=false;
    
for(int i=0;i<sonnum;++i)temp->son[i]=NULL;
    
return temp;
}

void  Insert(Trie  * pnt, char   * s, int  len) //  insert a new word to Trie tree
{
    Trie 
*temp=pnt;
    
for(int i=0;i<len;++i)
    
{
        
if(temp->son[s[i]-base]==NULL)temp->son[s[i]-base]=NewTrie();
        
else temp->son[s[i]-base]->num++;
        temp
=temp->son[s[i]-base];
    }

    temp
->terminal=true;
}

void  Delete(Trie  * pnt) //  delete the whole tree
{
    
if(pnt!=NULL)
    
{
        
for(int i=0;i<sonnum;++i)if(pnt->son[i]!=NULL)Delete(pnt->son[i]);
        delete pnt; 
        pnt
=NULL;
    }

}

Trie
*  Find(Trie  * pnt, char   * s, int  len) // trie to find the current word
{
    Trie 
*temp=pnt;
    
for(int i=0;i<len;++i)
        
if(temp->son[s[i]-base]!=NULL)temp=temp->son[s[i]-base];
        
else return NULL;
    
return temp;
}
 

你可能感兴趣的:(数据结构,null,delete,存储)