Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 5604 | Accepted: 1630 |
Description
Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.
Input
Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1 y1 x2 y2 follow, in which (x1, y1) and (x2, y2) are the coordinates of the two endpoints for one of the segments.
Output
For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.
Sample Input
3 2 1.0 2.0 3.0 4.0 4.0 5.0 6.0 7.0 3 0.0 0.0 0.0 1.0 0.0 1.0 0.0 2.0 1.0 1.0 2.0 1.0 3 0.0 0.0 0.0 1.0 0.0 2.0 0.0 3.0 1.0 1.0 2.0 1.0
Sample Output
Yes! Yes! No!
Source
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> const double eps = 1e-8; struct LPoint{ double x, y; }; struct LLine{ LPoint bg, ed; }line[110]; int dblcmp(double a, double b){ if (a - b >= eps) return 1; if (b - a >= eps) return -1; return 0; } double VecPro(double x1, double y1, double x2, double y2){ return (x1 * y2 - x2 * y1); } double NumPro(double x1, double y1, double x2, double y2){ return (x1 * x1 + y1 * y2); } //直线ab,与线段pq是否相交 int IsCross(LPoint a, LPoint b, LPoint p, LPoint q){ if (dblcmp(VecPro(a.x - b.x, a.y - b.y, p.x - b.x, p.y - b.y), 0) * dblcmp(VecPro(a.x - b.x, a.y - b.y, q.x - b.x, q.y - b.y), 0) <= 0) return 1; else return 0; } double Dis(LPoint a, LPoint b){ return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y)); } int main(){ int i, j, k; int n, T; scanf("%d", &T); while(T--){ scanf("%d", &n); for (i = 0; i < n; i++){ scanf("%lf %lf %lf %lf", &line[i].bg.x, &line[i].bg.y, &line[i].ed.x, &line[i].ed.y); } if (n <= 2) k = n; else{ k = 0; for (i = 0; i < n; i++){ for (j = i + 1; j < n; j++){ if (dblcmp(Dis(line[i].bg, line[j].bg), 0) > 0){ for (k = 0; k < n; k++){ if (!IsCross(line[i].bg, line[j].bg, line[k].bg, line[k].ed)) break; } if (k >= n) break; } if (dblcmp(Dis(line[i].bg, line[j].ed), 0) > 0){ for (k = 0; k < n; k++){ if (!IsCross(line[i].bg, line[j].ed, line[k].bg, line[k].ed)) break; } if (k >= n) break; } if (dblcmp(Dis(line[i].ed, line[j].bg), 0) > 0){ for (k = 0; k < n; k++){ if (!IsCross(line[i].ed, line[j].bg, line[k].bg, line[k].ed)) break; } if (k >= n) break; } if (dblcmp(Dis(line[i].ed, line[j].ed), 0) > 0){ for (k = 0; k < n; k++){ if (!IsCross(line[i].ed, line[j].ed, line[k].bg, line[k].ed)) break; } if (k >= n) break; } } if (k >= n) break; } } if (k >= n) printf("Yes!\n"); else printf("No!\n"); } return 0; } /* 题意:给n个线段,问是否存在一直线,使所有线段在该直线上投影相交于同一点 转帖discuss里hanjialong的思路: 首先题中的要求等价于:存在一条直线l和所有的线段都相交。 证明:若存在一条直线l和所有线段相交,作一条直线m和l垂直,则m就是题中要求的直线,所有线段投影的一个公共点即为垂足。(l和每条线段的交点沿l投影到m上的垂足处) 反过来,若存在m,所有线段在m上的投影有公共点,则过这点垂直于m作直线l,l一定和所有线段相交。 然后证存在l和所有线段相交等价于存在l过某两条线段的各一个端点且和所有线段相交。 充分性显然。必要性:若有l和所有线段相交,则可保持l和所有线段相交,左右平移l到和某一线段交于端点停止(“移不动了”)。然后绕这个交点旋转。也是转到“转不动了”(和另一线段交于其一个端点)为止。这样就找到了一个新的l。 于是本题可归结为枚举两两线段的各一个端点,连一条直线,再判断剩下的线段是否都和这条直线有交点。 计算几何还是难想啊... 然后就是俩点注意,n <= 2特判为yes, 作为直线的俩点不能重合 dblcmp写错了,贡献一WA...真是不细心啊... */