WGS84坐标和UTM坐标的转换

如题。做了一个Demo,主要是把最后面的参考资料1里面的脚本改成了C语言版本的.

代码:

  1 #ifndef __COORCONV_H__
  2 #define __COORCONV_H__
  3 
  4 #include <cmath>
  5 
  6 double pi = 3.14159265358979;
  7 
  8 /* Ellipsoid model constants (actual values here are for WGS84) */
  9 double sm_a = 6378137.0;
 10 double sm_b = 6356752.314;
 11 double sm_EccSquared = 6.69437999013e-03;
 12 double UTMScaleFactor = 0.9996;
 13 
 14 typedef struct tagUTMCorr 
 15 {
 16     double x;
 17     double y;
 18 }UTMCoor;
 19 
 20 typedef struct tagWGS84Corr
 21 {
 22     double lat;
 23     double log;
 24 }WGS84Corr;
 25 /*
 26 * DegToRad
 27 *
 28 * Converts degrees to radians.
 29 *
 30 */
 31 inline double DegToRad (double deg)
 32 {
 33     return (deg / 180.0 * pi);
 34 }
 35 
 36 /*
 37 * RadToDeg
 38 *
 39 * Converts radians to degrees.
 40 *
 41 */
 42 inline double RadToDeg (double rad)
 43 {
 44     return (rad / pi * 180.0);
 45 }
 46 
 47 /*
 48 * ArcLengthOfMeridian
 49 *
 50 * Computes the ellipsoidal distance from the equator to a point at a
 51 * given latitude.
 52 *
 53 * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
 54 * GPS: Theory and Practice, 3rd ed.  New York: Springer-Verlag Wien, 1994.
 55 *
 56 * Inputs:
 57 *     phi - Latitude of the point, in radians.
 58 *
 59 * Globals:
 60 *     sm_a - Ellipsoid model major axis.
 61 *     sm_b - Ellipsoid model minor axis.
 62 *
 63 * Returns:
 64 *     The ellipsoidal distance of the point from the equator, in meters.
 65 *
 66 */
 67 double ArcLengthOfMeridian (double phi)
 68 {
 69     double alpha, beta, gamma, delta, epsilon, n;
 70     double result;
 71 
 72     /* Precalculate n */
 73     n = (sm_a - sm_b) / (sm_a + sm_b);
 74 
 75     /* Precalculate alpha */
 76     alpha = ((sm_a + sm_b) / 2.0) * (1.0 + (pow(n, 2.0) / 4.0) + (pow(n, 4.0) / 64.0));
 77 
 78     /* Precalculate beta */
 79     beta = (-3.0 * n / 2.0) + (9.0 * pow(n, 3.0) / 16.0) + (-3.0 * pow(n, 5.0) / 32.0);
 80 
 81     /* Precalculate gamma */
 82     gamma = (15.0 * pow(n, 2.0) / 16.0) + (-15.0 * pow(n, 4.0) / 32.0);
 83 
 84     /* Precalculate delta */
 85     delta = (-35.0 * pow(n, 3.0) / 48.0) + (105.0 * pow(n, 5.0) / 256.0);
 86 
 87     /* Precalculate epsilon */
 88     epsilon = (315.0 * pow(n, 4.0) / 512.0);
 89 
 90     /* Now calculate the sum of the series and return */
 91     result = alpha * (phi + (beta * sin(2.0 * phi)) + (gamma * sin(4.0 * phi)) + (delta * sin(6.0 * phi)) + (epsilon * sin(8.0 * phi)));
 92 
 93     return result;
 94 }
 95 
 96 /*
 97 * UTMCentralMeridian
 98 *
 99 * Determines the central meridian for the given UTM zone.
100 *
101 * Inputs:
102 *     zone - An integer value designating the UTM zone, range [1,60].
103 *
104 * Returns:
105 *   The central meridian for the given UTM zone, in radians, or zero
106 *   if the UTM zone parameter is outside the range [1,60].
107 *   Range of the central meridian is the radian equivalent of [-177,+177].
108 *
109 */
110 inline double UTMCentralMeridian (int zone)
111 {
112     return DegToRad(-183.0 + (zone * 6.0));
113 }
114 
115 
116 /*
117 * FootpointLatitude
118 *
119 * Computes the footpoint latitude for use in converting transverse
120 * Mercator coordinates to ellipsoidal coordinates.
121 *
122 * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
123 *   GPS: Theory and Practice, 3rd ed.  New York: Springer-Verlag Wien, 1994.
124 *
125 * Inputs:
126 *   y - The UTM northing coordinate, in meters.
127 *
128 * Returns:
129 *   The footpoint latitude, in radians.
130 *
131 */
132 double FootpointLatitude (double y)
133 {
134     double y_, alpha_, beta_, gamma_, delta_, epsilon_, n;
135     double result;
136 
137     /* Precalculate n (Eq. 10.18) */
138     n = (sm_a - sm_b) / (sm_a + sm_b);
139 
140     /* Precalculate alpha_ (Eq. 10.22) */
141     /* (Same as alpha in Eq. 10.17) */
142     alpha_ = ((sm_a + sm_b) / 2.0) * (1 + (pow(n, 2.0) / 4) + (pow(n, 4.0) / 64));
143 
144     /* Precalculate y_ (Eq. 10.23) */
145     y_ = y / alpha_;
146 
147     /* Precalculate beta_ (Eq. 10.22) */
148     beta_ = (3.0 * n / 2.0) + (-27.0 * pow(n, 3.0) / 32.0) + (269.0 * pow(n, 5.0) / 512.0);
149 
150     /* Precalculate gamma_ (Eq. 10.22) */
151     gamma_ = (21.0 * pow(n, 2.0) / 16.0) + (-55.0 * pow(n, 4.0) / 32.0);
152 
153     /* Precalculate delta_ (Eq. 10.22) */
154     delta_ = (151.0 * pow (n, 3.0) / 96.0)    + (-417.0 * pow (n, 5.0) / 128.0);
155 
156     /* Precalculate epsilon_ (Eq. 10.22) */
157     epsilon_ = (1097.0 * pow(n, 4.0) / 512.0);
158 
159     /* Now calculate the sum of the series (Eq. 10.21) */
160     result = y_ + (beta_ * sin(2.0 * y_)) + (gamma_ * sin(4.0 * y_)) + (delta_ * sin(6.0 * y_)) + (epsilon_ * sin(8.0 * y_));
161 
162     return result;
163 }
164 
165 /*
166 * MapLatLonToXY
167 *
168 * Converts a latitude/longitude pair to x and y coordinates in the
169 * Transverse Mercator projection.  Note that Transverse Mercator is not
170 * the same as UTM; a scale factor is required to convert between them.
171 *
172 * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
173 * GPS: Theory and Practice, 3rd ed.  New York: Springer-Verlag Wien, 1994.
174 *
175 * Inputs:
176 *    phi - Latitude of the point, in radians.
177 *    lambda - Longitude of the point, in radians.
178 *    lambda0 - Longitude of the central meridian to be used, in radians.
179 *
180 * Outputs:
181 *    xy - A 2-element array containing the x and y coordinates
182 *         of the computed point.
183 *
184 * Returns:
185 *    The function does not return a value.
186 *
187 */
188 void MapLatLonToXY (double phi, double lambda, double lambda0, UTMCoor &xy)
189 {
190     double N, nu2, ep2, t, t2, l;
191     double l3coef, l4coef, l5coef, l6coef, l7coef, l8coef;
192     double tmp;
193 
194     /* Precalculate ep2 */
195     ep2 = (pow(sm_a, 2.0) - pow(sm_b, 2.0)) / pow(sm_b, 2.0);
196 
197     /* Precalculate nu2 */
198     nu2 = ep2 * pow(cos(phi), 2.0);
199 
200     /* Precalculate N */
201     N = pow(sm_a, 2.0) / (sm_b * sqrt(1 + nu2));
202 
203     /* Precalculate t */
204     t = tan (phi);
205     t2 = t * t;
206     tmp = (t2 * t2 * t2) - pow (t, 6.0);
207 
208     /* Precalculate l */
209     l = lambda - lambda0;
210 
211     /* Precalculate coefficients for l**n in the equations below
212     so a normal human being can read the expressions for easting
213     and northing
214     -- l**1 and l**2 have coefficients of 1.0 */
215     l3coef = 1.0 - t2 + nu2;
216 
217     l4coef = 5.0 - t2 + 9 * nu2 + 4.0 * (nu2 * nu2);
218 
219     l5coef = 5.0 - 18.0 * t2 + (t2 * t2) + 14.0 * nu2 - 58.0 * t2 * nu2;
220 
221     l6coef = 61.0 - 58.0 * t2 + (t2 * t2) + 270.0 * nu2    - 330.0 * t2 * nu2;
222 
223     l7coef = 61.0 - 479.0 * t2 + 179.0 * (t2 * t2) - (t2 * t2 * t2);
224 
225     l8coef = 1385.0 - 3111.0 * t2 + 543.0 * (t2 * t2) - (t2 * t2 * t2);
226 
227     /* Calculate easting (x) */
228     xy.x = N * cos (phi) * l + (N / 6.0 * pow(cos(phi), 3.0) * l3coef * pow(l, 3.0))
229         + (N / 120.0 * pow(cos(phi), 5.0) * l5coef * pow(l, 5.0))
230         + (N / 5040.0 * pow(cos (phi), 7.0) * l7coef * pow(l, 7.0));
231 
232     /* Calculate northing (y) */
233     xy.y = ArcLengthOfMeridian (phi)
234         + (t / 2.0 * N * pow(cos(phi), 2.0) * pow(l, 2.0))
235         + (t / 24.0 * N * pow(cos(phi), 4.0) * l4coef * pow(l, 4.0))
236         + (t / 720.0 * N * pow(cos(phi), 6.0) * l6coef * pow(l, 6.0))
237         + (t / 40320.0 * N * pow(cos(phi), 8.0) * l8coef * pow(l, 8.0));
238 }
239 
240 
241 
242 /*
243 * MapXYToLatLon
244 *
245 * Converts x and y coordinates in the Transverse Mercator projection to
246 * a latitude/longitude pair.  Note that Transverse Mercator is not
247 * the same as UTM; a scale factor is required to convert between them.
248 *
249 * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
250 *   GPS: Theory and Practice, 3rd ed.  New York: Springer-Verlag Wien, 1994.
251 *
252 * Inputs:
253 *   x - The easting of the point, in meters.
254 *   y - The northing of the point, in meters.
255 *   lambda0 - Longitude of the central meridian to be used, in radians.
256 *
257 * Outputs:
258 *   philambda - A 2-element containing the latitude and longitude
259 *               in radians.
260 *
261 * Returns:
262 *   The function does not return a value.
263 *
264 * Remarks:
265 *   The local variables Nf, nuf2, tf, and tf2 serve the same purpose as
266 *   N, nu2, t, and t2 in MapLatLonToXY, but they are computed with respect
267 *   to the footpoint latitude phif.
268 *
269 *   x1frac, x2frac, x2poly, x3poly, etc. are to enhance readability and
270 *   to optimize computations.
271 *
272 */
273 void MapXYToLatLon (double x, double y, double lambda0, WGS84Corr &philambda)
274 {
275     double phif, Nf, Nfpow, nuf2, ep2, tf, tf2, tf4, cf;
276     double x1frac, x2frac, x3frac, x4frac, x5frac, x6frac, x7frac, x8frac;
277     double x2poly, x3poly, x4poly, x5poly, x6poly, x7poly, x8poly;
278 
279     /* Get the value of phif, the footpoint latitude. */
280     phif = FootpointLatitude (y);
281 
282     /* Precalculate ep2 */
283     ep2 = (pow(sm_a, 2.0) - pow(sm_b, 2.0))    / pow(sm_b, 2.0);
284 
285     /* Precalculate cos (phif) */
286     cf = cos (phif);
287 
288     /* Precalculate nuf2 */
289     nuf2 = ep2 * pow (cf, 2.0);
290 
291     /* Precalculate Nf and initialize Nfpow */
292     Nf = pow(sm_a, 2.0) / (sm_b * sqrt(1 + nuf2));
293     Nfpow = Nf;
294 
295     /* Precalculate tf */
296     tf = tan (phif);
297     tf2 = tf * tf;
298     tf4 = tf2 * tf2;
299 
300     /* Precalculate fractional coefficients for x**n in the equations
301     below to simplify the expressions for latitude and longitude. */
302     x1frac = 1.0 / (Nfpow * cf);
303 
304     Nfpow *= Nf;   /* now equals Nf**2) */
305     x2frac = tf / (2.0 * Nfpow);
306 
307     Nfpow *= Nf;   /* now equals Nf**3) */
308     x3frac = 1.0 / (6.0 * Nfpow * cf);
309 
310     Nfpow *= Nf;   /* now equals Nf**4) */
311     x4frac = tf / (24.0 * Nfpow);
312 
313     Nfpow *= Nf;   /* now equals Nf**5) */
314     x5frac = 1.0 / (120.0 * Nfpow * cf);
315 
316     Nfpow *= Nf;   /* now equals Nf**6) */
317     x6frac = tf / (720.0 * Nfpow);
318 
319     Nfpow *= Nf;   /* now equals Nf**7) */
320     x7frac = 1.0 / (5040.0 * Nfpow * cf);
321 
322     Nfpow *= Nf;   /* now equals Nf**8) */
323     x8frac = tf / (40320.0 * Nfpow);
324 
325     /* Precalculate polynomial coefficients for x**n.
326     -- x**1 does not have a polynomial coefficient. */
327     x2poly = -1.0 - nuf2;
328 
329     x3poly = -1.0 - 2 * tf2 - nuf2;
330 
331     x4poly = 5.0 + 3.0 * tf2 + 6.0 * nuf2 - 6.0 * tf2 * nuf2 - 3.0 * (nuf2 *nuf2) - 9.0 * tf2 * (nuf2 * nuf2);
332 
333     x5poly = 5.0 + 28.0 * tf2 + 24.0 * tf4 + 6.0 * nuf2 + 8.0 * tf2 * nuf2;
334 
335     x6poly = -61.0 - 90.0 * tf2 - 45.0 * tf4 - 107.0 * nuf2    + 162.0 * tf2 * nuf2;
336 
337     x7poly = -61.0 - 662.0 * tf2 - 1320.0 * tf4 - 720.0 * (tf4 * tf2);
338 
339     x8poly = 1385.0 + 3633.0 * tf2 + 4095.0 * tf4 + 1575 * (tf4 * tf2);
340 
341     /* Calculate latitude */
342     philambda.lat = phif + x2frac * x2poly * (x * x) + x4frac * x4poly * pow(x, 4.0) + x6frac * x6poly * pow(x, 6.0) + x8frac * x8poly * pow(x, 8.0);
343 
344     /* Calculate longitude */
345     philambda.log = lambda0 + x1frac * x + x3frac * x3poly * pow(x, 3.0) + x5frac * x5poly * pow(x, 5.0) + x7frac * x7poly * pow(x, 7.0);
346 }
347 
348 
349 /*
350 * LatLonToUTMXY
351 *
352 * Converts a latitude/longitude pair to x and y coordinates in the
353 * Universal Transverse Mercator projection.
354 *
355 * Inputs:
356 *   lat - Latitude of the point, in radians.
357 *   lon - Longitude of the point, in radians.
358 *   zone - UTM zone to be used for calculating values for x and y.
359 *          If zone is less than 1 or greater than 60, the routine
360 *          will determine the appropriate zone from the value of lon.
361 *
362 * Outputs:
363 *   xy - A 2-element array where the UTM x and y values will be stored.
364 *
365 * Returns:
366 *   void
367 *
368 */
369 void LatLonToUTMXY (double lat, double lon, int zone, UTMCoor &xy)
370 {
371     MapLatLonToXY (lat, lon, UTMCentralMeridian(zone), xy);
372 
373     /* Adjust easting and northing for UTM system. */
374     xy.x = xy.x * UTMScaleFactor + 500000.0;
375     xy.y = xy.y * UTMScaleFactor;
376     if (xy.y < 0.0)
377         xy.y += 10000000.0;
378 }
379 
380 
381 
382 /*
383 * UTMXYToLatLon
384 *
385 * Converts x and y coordinates in the Universal Transverse Mercator
386 * projection to a latitude/longitude pair.
387 *
388 * Inputs:
389 *    x - The easting of the point, in meters.
390 *    y - The northing of the point, in meters.
391 *    zone - The UTM zone in which the point lies.
392 *    southhemi - True if the point is in the southern hemisphere;
393 *               false otherwise.
394 *
395 * Outputs:
396 *    latlon - A 2-element array containing the latitude and
397 *            longitude of the point, in radians.
398 *
399 * Returns:
400 *    The function does not return a value.
401 *
402 */
403 void UTMXYToLatLon (double x, double y, int zone, bool southhemi, WGS84Corr &latlon)
404 {
405     double cmeridian;
406 
407     x -= 500000.0;
408     x /= UTMScaleFactor;
409 
410     /* If in southern hemisphere, adjust y accordingly. */
411     if (southhemi)
412         y -= 10000000.0;
413 
414     y /= UTMScaleFactor;
415 
416     cmeridian = UTMCentralMeridian (zone);
417     MapXYToLatLon (x, y, cmeridian, latlon);
418 }
419 
420 #endif //__COORCONV_H__
View Code

然后用MFC写了一个类似的对话框程序:

WGS84坐标和UTM坐标的转换_第1张图片

全部的源代码:

http://files.cnblogs.com/wb-DarkHorse/CoordinateConvert.rar

RERERENCE:

1 http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html      网页版demo

2 http://www.mogoo.org/fang/?p=65   一位博客里面的,用Java写的

3 http://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system  wiki的介绍,公式都写的很清楚,不多说

4 http://my.oschina.net/lidayong/blog/59869  一位博客里的,用c#写的

5 http://www.zhdzch.com/xxyd/chzs/200904/522.html  比较清楚的介绍,用VB写的

 

下面是国外的几篇资料:

http://www.movable-type.co.uk/scripts/latlong-vincenty-direct.html 根据经纬度求距离

http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf 对应上面链接的文章

http://trac.osgeo.org/proj/ 一个开源的地图投影库

你可能感兴趣的:(WGS84坐标和UTM坐标的转换)