测试数据:
8 16
4 5 .35
4 7 .37
5 7 .28
0 7 .16
1 5 .32
0 4 .38
2 3 .17
1 7 .19
0 2 .26
1 2 .36
1 3 .29
2 7 .34
6 2 .40
3 6 .52
6 0 .58
6 4 .93
测试结果:
1.81
代码:
#include<cstdio> #include<cstring> #include<vector> #include<queue> #include<utility> #include<functional> using namespace std; const int mx = 10005; typedef pair<double, int> P; ///first是当MST与该点连接时,所连的那条边的长度,second是顶点编号 struct edge { double cost; int to; edge(double cost = 0.0, int to = 0): cost(cost), to(to) {} } e; vector<edge> G[mx]; double disTo[mx]; /// 当MST与点i连接时,所连的那条边的长度 bool vis[mx]; priority_queue<P, vector<P>, greater<P> > pq; ///复杂度:O(ElogV) double prim() { P p; int v, i; double sumcost = 0.0; memset(disTo, 100, sizeof(disTo)); memset(vis, 0, sizeof(vis)); disTo[0] = 0.0; while (!pq.empty()) pq.pop(); pq.push(P(0.0, 0));/// 从点0开始构造MST while (!pq.empty()) { p = pq.top(), pq.pop(); v = p.second; /// v视作e.from if (vis[v] || p.first > disTo[v]) continue; vis[v] = true; sumcost += disTo[v]; for (i = 0; i < G[v].size(); ++i) { e = G[v][i]; /// v视作e.from if (disTo[e.to] > e.cost) { disTo[e.to] = e.cost; pq.push(P(disTo[e.to], e.to)); } } } return sumcost; } int main() { int n, m, i, a, b; double cost; while (~scanf("%d%d", &n, &m)) { for (i = 0; i < n; ++i) G[i].clear(); while (m--) { scanf("%d%d%lf", &a, &b, &cost); G[a].push_back(edge(cost, b)); G[b].push_back(edge(cost, a)); } printf("%.2f\n", prim()); } return 0; }
O(V^2)复杂度的算法见
http://blog.csdn.net/synapse7/article/details/18141059