对于n个点,先按时间排序。二分答案,对于二分的当前值dis,我们将每个点向外扩展dis个距离,也就是个正方形。这个点和前一个时间点差的时间d也作为前一个距离,向外扩展d。。。。求交以后存在矩形,那么二分当前值存在,否则不存在。。。。
#include <iostream> #include <queue> #include <stack> #include <map> #include <set> #include <bitset> #include <cstdio> #include <algorithm> #include <cstring> #include <climits> #include <cstdlib> #include <cmath> #include <time.h> #define maxn 50005 #define maxm 100005 #define eps 1e-12 #define mod 1000003 #define INF 0x3f3f3f3f #define PI (acos(-1.0)) #define lowbit(x) (x&(-x)) #define mp make_pair #define ls o<<1 #define rs o<<1 | 1 #define lson o<<1, L, mid #define rson o<<1 | 1, mid+1, R #pragma comment(linker, "/STACK:102400000,102400000") #define pii pair<int, int> typedef long long LL; typedef unsigned long long ULL; //typedef int LL; using namespace std; LL qpow(LL a, LL b){LL res=1,base=a;while(b){if(b%2)res=res*base;base=base*base;b/=2;}return res;} LL powmod(LL a, LL b){LL res=1,base=a;while(b){if(b%2)res=res*base%mod;base=base*base%mod;b/=2;}return res;} // head struct node { LL x, y, t; }a[maxn]; int n; int cmp(node aa, node bb) { return aa.t < bb.t; } bool check(LL dis) { LL x1 = -10000000000LL; LL y1 = -10000000000LL; LL x2 = 10000000000LL; LL y2 = 10000000000LL; for(int i = 1; i <= n; i++) { LL t = 0; if(i != 1) t = a[i].t - a[i-1].t; t *= 2; x1 -= t; y1 -= t; x2 += t; y2 += t; LL t1 = 2 * (a[i].y - a[i].x); LL t2 = 2 * (a[i].y + a[i].x); x1 = max(x1, t1 - dis); y1 = max(y1, t2 - dis); x2 = min(x2, t1 + dis); y2 = min(y2, t2 + dis); if(x1 > x2 || y1 > y2) return false; } return true; } void work() { scanf("%d", &n); for(int i = 1; i <= n; i++) scanf("%lld%lld%lld", &a[i].x, &a[i].y, &a[i].t); sort(a+1, a+n+1, cmp); LL top = 40000000000LL, bot = 0, mid, res; while(top >= bot) { mid = bot + (top - bot) / 2; if(check(mid)) res = mid, top = mid-1; else bot = mid+1; } if(res % 2) printf("%lld/2\n", res); else printf("%lld/1\n", res / 2); } int main() { int _; scanf("%d", &_); for(int i = 1; i <= _; i++) { printf("Case #%d:\n", i); work(); } return 0; }