功 能:创建灰度共生矩阵
Gray-level co-occurrence matrix from an image
图像的灰度共生矩阵
灰度共生矩阵是像素距离和角度的矩阵函数,它通过计算图像中一定距离和一定方向的两点灰度之间的相关性,来反映图像在方向、间隔、变化幅度及快慢上的综合信息。
使用方法:
glcm = graycomatrix(I)
glcms = graycomatrix(I,param1,val1,param2,val2,...)
[glcms,SI] = graycomatrix(...)
描述:
glcms = graycomatrix(I) 产生图像I的灰度共生矩阵GLCM。它是通过计算两灰度值 i,j 在图像 I 中水平相邻的次数而得到的 (你也可以通过调整' Offsets' 参数来指定其它的像素空间关系),GLCM中的每一个元素(i,j)代表灰度 i 与灰度 j 在图像 I 中水平相邻的次数。
graycomatrix()先将图像 I 归一化到指定的灰度级,再计算GLCM;这是因为动态地求取图像的GLCM区间代价过高。如果I是一个二值图像,那么灰度共生矩阵就将图像转换到二值灰度级(黑和白)。如果I是一个灰度图像, 那将转换到8灰度级(默认)。灰度的级数决定了GLCM的大小尺寸,假设灰度级为L,则GLCM的尺寸是L x L。你可以通过设定参数“NumLevels”来指定灰度级数目,还可以通过设置“GrayLimits"参数来设置灰度共生矩阵的转换方式。
下图在一个4x5的图像I中显示了如何求解灰度共生矩阵,以(1,1)点为例,在图像 I 中水平相邻的像素对的灰度值都为1的情况只出现了1次,所以GLCM(1,1)的值是1。,同理,在图像 I 中水平相邻的像素对的灰度值分别为 1和2 的情况出现了2次,所以GLCM(1,2)的值是2。 graycomatrix迭代以上过程,就可以计算出GLCM的所有位置(L^2)的取值。
glcms = graycomatrix(I,param1,val1,param2,val2,...) 返回一个或多个灰度灰度共生矩阵,根据指定的参数对的值。参数可以简写,并且对大小写不敏感。
参数
下面按照字母的顺序列写了参数:
'GrayLimits' 是两个元素的向量[low,high],指明了图像 I 中的灰度值如何线性归一化到灰度级别。低于或等于low的灰度值置成1,大于或等于high的灰度值置成NumLevels。如果其设为[],灰度共生矩阵将使用图像I的最小和最大灰度值分别作为GrayLimits的low和high,即[min(I(:) , max(I(:)))]。
'NumLevels' 一个整数,指定灰度级的数目。例如,如果NumLevels为8,意思就是将图像I的灰度映射到1到8之间,它也决定了灰度共生矩阵的大小。默认值是8。
'Offset' 一个p*2的整数矩阵,指定了感兴趣像素对之间的距离和方向。矩阵中的每一行是一个两元素的向量,[row_offset , col_offset],它指定了一对像素之间的关系,或者说是位移。row_offset是感兴趣像素对间隔的行的数目;col_offset是感兴趣像素对间隔的列的数目。offset通常表示一个角度,下面列写的offset的值指定了常见角度。D代表是当前像素与邻居的距离。
Angle Offset
0 [0 D]
45 [-D D]
90 [-D 0]
135 [-D -D]
下图说明了数组:offset = [0 1; -1 1; -1 0; -1 -1]
'Symmetric' 一个布尔型数(逻辑型),指定创建GLCM时像素对中的两像素的顺序是否考虑。例如,当 'Symmetric' 是true时,graycomatrix计算1连接2的次数时,(1,2)和(2,1)这两种数对都计算在内。当'Symmetric'是false时,graycomatrix只是计算(1,2)或(2,1).
[glcm,SI] = graycomatrix(....) 返回归一化(灰度级的)图像,SI,它被用来计算灰度共生矩阵(GLCM),SI图像的取值范围是[1,NumLevels]。
支持类型
I可以是数字型或逻辑型,但必须是二维的,实数的,非稀疏的矩阵。SI是一个double型矩阵,它和I的尺寸相同。glcms是一个‘NumLevels’ x ‘NumLevels’ x P的double型矩阵,P是offsets的数目(即‘Offset’参数值的列数)。
说明:
灰度共生矩阵(GLCM)的另一个名字是灰度空间相关矩阵(gray-level spatial dependence matrix)。另一方面,co-occurrence在文献中使用时经常不带连字符,即cooccurrence。
如果像素对中的一个像素值为NaN,graycomatrix忽略该像素对。
graycomatrix用NumLevels值替代positive Inf,用1代替negative Inf。
如果边界像素的邻居落在图像边界的外边,graycomatrix忽略该边界像素。
当'Symmetric'设置成'true'时,GLCM 是关于对角线对称的,就是Haralick (1973)描述的GLCM。下面句法(1)使用'Symmetric'为'true'时创建了GLCM等于句法(2)和句法(3)使用'Symmetric'为‘false’时产生的GLCM的和。
graycomatrix(I, 'offset', [0 1], 'Symmetric', true) (1)
graycomatrix(I,'offset', [0,1], 'Symmetric', false) (2)
graycomatrix(I,'offset', [0,-1], 'Symmetric',false) (3)
示例:
计算灰度共生矩阵,并且返回缩放后的图像,SI
I = [ 1 1 5 6 8 8; 2 3 5 7 0 2; 0 2 3 5 6 7]; % 生成图像I矩阵
[glcm,SI] = graycomatrix(I,'NumLevels',9,'G',[]) % 计算灰度共生矩阵(glcm)和归一化图像(SI)
计算灰度图像的灰度共生矩阵
I = imread('circuit.tif'); % 读入circuit.tif图像
glcm = graycomatrix(I,'Offset',[2 0]);
参考文献
Haralick, R.M., K. Shanmugan, and I. Dinstein, "Textural Features for Image Classification", IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3, 1973, pp. 610-621.
Haralick, R.M., and L.G. Shapiro. Computer and Robot Vision: Vol. 1, Addison-Wesley, 1992, p. 459.
灰度共生矩阵的特征:
角二阶矩(Angular Second Moment, ASM)
也称为 能量
ASM=sum(p(i,j).^2) p(i,j)指归一化后的灰度共生矩阵
角二阶矩是图像灰度分布均匀程度和纹理粗细的一个度量,当图像纹理绞细致、灰度分布均匀时,能量值较大,反之,较小。
熵(Entropy, ENT)
ENT=sum(p(i,j)*(-ln(p(i,j)))
是描述图像具有的信息量的度量,表明图像的复杂程序,当复杂程序高时,熵值较大,反之则较小。
反差分矩阵(Inverse Differential Moment, IDM)
IDM=sum(p(i,j)/(1+(i-j)^2))
反映了纹理的清晰程度和规则程度,纹理清晰、规律性较强、易于描述的,值较大;杂乱无章的,难于描述的,值较小。
************************************************************************************************************************************************************************
************************************************************* graycomatrix源程序代码 *****************************************************************************
************************************************************************************************************************************************************************
- function [GLCMS,SI] = graycomatrix(varargin)
- %GRAYCOMATRIX Create gray-level co-occurrence matrix.
- % GLCMS = GRAYCOMATRIX(I) analyzes pairs of horizontally adjacent pixels
- % in a scaled version of I. If I is a binary image, it is scaled to 2
- % levels. If I is an intensity image, it is scaled to 8 levels. In this
- % case, there are 8 x 8 = 64 possible ordered combinations of values for
- % each pixel pair. GRAYCOMATRIX accumulates the total occurrence of each
- % such combination, producing a 8-by-8 output array, GLCMS. The row and
- % column subscripts in GLCMS correspond respectively to the first and
- % second (scaled) pixel-pair values.
- %
- % GLCMS = GRAYCOMATRIX(I,PARAM1,VALUE1,PARAM2,VALUE2,...) returns one or
- % more gray-level co-occurrence matrices, depending on the values of the
- % optional parameter/value pairs. Parameter names can be abbreviated, and
- % case does not matter.
- %
- % Parameters include:
- %
- % 'Offset' A p-by-2 array of offsets specifying the distance
- % between the pixel-of-interest and its neighbor. Each
- % row in the array is a two-element vector,
- % [ROW_OFFSET COL_OFFSET], that specifies the
- % relationship, or 'Offset', between a pair of pixels.
- % ROW_OFFSET is the number of rows between the
- % pixel-of-interest and its neighbor. COL_OFFSET is the
- % number of columns between the pixel-of-interest and
- % its neighbor. For example, if you want the number of
- % occurrences where the pixel of interest is one pixel
- % to the left of its neighbor, then
- % [ROW_OFFSET COL_OFFSET] is [0 1].
- %
- % Because this offset is often expressed as an angle,
- % the following table lists the offset values that
- % specify common angles, given the pixel distance D.
- %
- % Angle OFFSET
- % ----- ------
- % 0 [0 D]
- % 45 [-D D]
- % 90 [-D 0]
- % 135 [-D -D]
- %
- % ROW_OFFSET and COL_OFFSET must be integers.
- %
- % Default: [0 1]
- %
- % 'NumLevels' An integer specifying the number of gray levels to use when
- % scaling the grayscale values in I. For example, if
- % 'NumLevels' is 8, GRAYCOMATRIX scales the values in I so
- % they are integers between 1 and 8. The number of gray levels
- % determines the size of the gray-level co-occurrence matrix
- % (GLCM).
- %
- % 'NumLevels' must be an integer. 'NumLevels' must be 2 if I
- % is logical.
- %
- % Default: 8 for numeric
- % 2 for logical
- %
- % 'GrayLimits' A two-element vector, [LOW HIGH], that specifies how
- % the grayscale values in I are linearly scaled into
- % gray levels. Grayscale values less than or equal to
- % LOW are scaled to 1. Grayscale values greater than or
- % equal to HIGH are scaled to HIGH. If 'GrayLimits' is
- % set to [], GRAYCOMATRIX uses the minimum and maximum
- % grayscale values in I as limits,
- % [min(I(:)) max(I(:))].
- %
- % Default: the LOW and HIGH values specified by the
- % class, e.g., [LOW HIGH] is [0 1] if I is double and
- % [-32768 32767] if I is int16.
- %
- % 'Symmetric' A Boolean that creates a GLCM where the ordering of
- % values in the pixel pairs is not considered. For
- % example, when calculating the number of times the
- % value 1 is adjacent to the value 2, GRAYCOMATRIX
- % counts both 1,2 and 2,1 pairings, if 'Symmetric' is
- % set to true. When 'Symmetric' is set to false,
- % GRAYCOMATRIX only counts 1,2 or 2,1, depending on the
- % value of 'offset'. The GLCM created in this way is
- % symmetric across its diagonal, and is equivalent to
- % the GLCM described by Haralick (1973).
- %
- % The GLCM produced by the following syntax,
- %
- % graycomatrix(I, 'offset', [0 1], 'Symmetric', true)
- %
- % is equivalent to the sum of the two GLCMs produced by
- % these statements.
- %
- % graycomatrix(I, 'offset', [0 1], 'Symmetric', false)
- % graycomatrix(I, 'offset', [0 -1], 'Symmetric', false)
- %
- % Default: false
- %
- %
- % [GLCMS,SI] = GRAYCOMATRIX(...) returns the scaled image used to
- % calculate GLCM. The values in SI are between 1 and 'NumLevels'.
- %
- % Class Support
- % -------------
- % I can be numeric or logical. I must be 2D, real, and nonsparse. SI is
- % a double matrix having the same size as I. GLCMS is an
- % 'NumLevels'-by-'NumLevels'-by-P double array where P is the number of
- % offsets in OFFSET.
- %
- % Notes
- % -----
- % Another name for a gray-level co-occurrence matrix is a gray-level
- % spatial dependence matrix.
- %
- % GRAYCOMATRIX ignores pixels pairs if either of their values is NaN. It
- % also replaces Inf with the value 'NumLevels' and -Inf with the value 1.
- %
- % GRAYCOMATRIX ignores border pixels, if the corresponding neighbors
- % defined by 'Offset' fall outside the image boundaries.
- %
- % References
- % ----------
- % Haralick, R.M., K. Shanmugan, and I. Dinstein, "Textural Features for
- % Image Classification", IEEE Transactions on Systems, Man, and
- % Cybernetics, Vol. SMC-3, 1973, pp. 610-621.
- %
- % Haralick, R.M., and L.G. Shapiro. Computer and Robot Vision: Vol. 1,
- % Addison-Wesley, 1992, p. 459.
- %
- % Example 1
- % ---------
- % Calculate the gray-level co-occurrence matrix (GLCM) and return the
- % scaled version of the image, SI, used by GRAYCOMATRIX to generate the
- % GLCM.
- %
- % I = [1 1 5 6 8 8;2 3 5 7 0 2; 0 2 3 5 6 7];
- % [GLCMS,SI] = graycomatrix(I,'NumLevels',9,'G',[])
- %
- % Example 2
- % ---------
- % Calculate the gray-level co-occurrence matrix for a grayscale image.
- %
- % I = imread('circuit.tif');
- % GLCMS = graycomatrix(I,'Offset',[2 0])
- %
- % Example 3
- % ---------
- % Calculate gray-level co-occurrences matrices for a grayscale image
- % using four different offsets.
- %
- % I = imread('cell.tif');
- % offsets = [0 1;-1 1;-1 0;-1 -1];
- % [GLCMS,SI] = graycomatrix(I,'Of',offsets);
- %
- % Example 4
- % ---------
- % Calculate the symmetric gray-level co-occurrence matrix (the Haralick
- % definition) for a grayscale image.
- %
- % I = imread('circuit.tif');
- % GLCMS = graycomatrix(I,'Offset',[2 0],'Symmetric', true)
- %
- % See also GRAYCOPROPS.
-
- % Copyright 1993-2008 The MathWorks, Inc.
- % $Revision.1 $ $Date: 2008/04/03 03:10:53 $
-
- [I, Offset, NL, GL, makeSymmetric] = ParseInputs(varargin{:});
-
- % Scale I so that it contains integers between 1 and NL.
- if GL(2) == GL(1)
- SI = ones(size(I));
- else
- slope = (NL-1) / (GL(2) - GL(1));
- intercept = 1 - (slope*(GL(1)));
- SI = round(imlincomb(slope,I,intercept,'double'));
- end
-
- % Clip values if user had a value that is outside of the range, e.g.,
- % double image = [0 .5 2;0 1 1]; 2 is outside of [0,1]. The order of the
- % following lines matters in the event that NL = 0.
- SI(SI > NL) = NL;
- SI(SI < 1) = 1;
-
- numOffsets = size(Offset,1);
-
- if NL ~= 0
-
- % Create vectors of row and column subscripts for every pixel and its
- % neighbor.
- s = size(I);
- [r,c] = meshgrid(1:s(1),1:s(2));
- r = r(:);
- c = c(:);
-
- % Compute GLCMS
- GLCMS = zeros(NL,NL,numOffsets);
- for k = 1 : numOffsets
- GLCMS(:,:,k) = computeGLCM(r,c,Offset(k,:),SI,NL);
-
- if makeSymmetric
- % Reflect glcm across the diagonal
- glcmTranspose = GLCMS(:,:,k).';
- GLCMS(:,:,k) = GLCMS(:,:,k) + glcmTranspose;
- end
- end
-
- else
- GLCMS = zeros(0,0,numOffsets);
- end
-
- %-----------------------------------------------------------------------------
- function oneGLCM = computeGLCM(r,c,offset,si,nl)
- % computes GLCM given one Offset
-
- r2 = r + offset(1);
- c2 = c + offset(2);
-
- [nRow nCol] = size(si);
- % Determine locations where subscripts outside the image boundary
- outsideBounds = find(c2 < 1 | c2 > nCol | r2 < 1 | r2 > nRow);
-
- % Create vector containing si(r1,c1)
- v1 = shiftdim(si,1);
- v1 = v1(:);
- v1(outsideBounds) = [];
-
- % Create vector containing si(r2,c2). Not using sub2ind for performance
- % reasons
- r2(outsideBounds) = []; %#ok
- c2(outsideBounds) = []; %#ok
- Index = r2 + (c2 - 1)*nRow;
- v2 = si(Index);
-
- % Remove pixel and its neighbor if their value is NaN.
- bad = isnan(v1) | isnan(v2);
- if any(bad)
- wid = sprintf('Images:%s:scaledImageContainsNan',mfilename);
- warning(wid, ...
- 'GLCM does not count pixel pairs if either of their values is NaN.');
- end
-
- Ind = [v1 v2];
- Ind(bad,:) = [];
-
- if isempty(Ind)
- oneGLCM = zeros(nl);
- else
- % Tabulate the occurrences of pixel pairs having v1 and v2.
- oneGLCM = accumarray(Ind, 1, [nl nl]);
- end
-
- %-----------------------------------------------------------------------------
- function [I, offset, nl, gl, sym] = ParseInputs(varargin)
-
- iptchecknargin(1,9,nargin,mfilename);
-
- % Check I
- I = varargin{1};
- iptcheckinput(I,{'logical','numeric'},{'2d','real','nonsparse'}, ...
- mfilename,'I',1);
-
- % Assign Defaults
- offset = [0 1];
- if islogical(I)
- nl = 2;
- else
- nl = 8;
- end
- gl = getrangefromclass(I);
- sym = false;
-
- % Parse Input Arguments
- if nargin ~= 1
-
- paramStrings = {'Offset','NumLevels','GrayLimits','Symmetric'};
-
- for k = 2:2:nargin
-
- param = lower(varargin{k});
- inputStr = iptcheckstrs(param, paramStrings, mfilename, 'PARAM', k);
- idx = k + 1; %Advance index to the VALUE portion of the input.
- if idx > nargin
- eid = sprintf('Images:%s:missingParameterValue', mfilename);
- error(eid,'Parameter ''%s'' must be followed by a value.', inputStr);
- end
-
- switch (inputStr)
-
- case 'Offset'
-
- offset = varargin{idx};
- iptcheckinput(offset,{'logical','numeric'},...
- {'2d','nonempty','integer','real'},...
- mfilename, 'OFFSET', idx);
- if size(offset,2) ~= 2
- eid = sprintf('Images:%s:invalidOffsetSize',mfilename);
- error(eid, 'OFFSET must be an N-by-2 array.');
- end
- offset = double(offset);
-
- case 'NumLevels'
-
- nl = varargin{idx};
- iptcheckinput(nl,{'logical','numeric'},...
- {'real','integer','nonnegative','nonempty','nonsparse'},...
- mfilename, 'NL', idx);
- if numel(nl) > 1
- eid = sprintf('Images:%s:invalidNumLevels',mfilename);
- error(eid, 'NL cannot contain more than one element.');
- elseif islogical(I) && nl ~= 2
- eid = sprintf('Images:%s:invalidNumLevelsForBinary',mfilename);
- error(eid, 'NL must be two for a binary image.');
- end
- nl = double(nl);
-
- case 'GrayLimits'
-
- gl = varargin{idx};
- iptcheckinput(gl,{'logical','numeric'},{'vector','real'},...
- mfilename, 'GL', idx);
- if isempty(gl)
- gl = [min(I(:)) max(I(:))];
- elseif numel(gl) ~= 2
- eid = sprintf('Images:%s:invalidGrayLimitsSize',mfilename);
- error(eid, 'GL must be a two-element vector.');
- end
- gl = double(gl);
-
- case 'Symmetric'
- sym = varargin{idx};
- iptcheckinput(sym,{'logical'}, {'scalar'}, mfilename, 'Symmetric', idx);
-
- end
- end
- end