【转】Gabor函数和Gabor滤波器的原理和实现

原文:http://blog.shamoxia.com/html/y2009/381.html

Gabor函数
  Gabor变换属于加窗傅立叶变换,Gabor函数可以在频域不同尺度、不同方向上提取相关的特征。另外Gabor函数与人眼的生物作用相仿,所以经常用作纹理识别上,并取得了较好的效果。二维Gabor函数可以表示为:
  其中:
  v的取值决定了Gabor滤波的波长,u的取值表示Gabor核函数的方向,K表示总的方向数。参数决定了高斯窗口的大小,这里取。程序中取4个频率(v=0, 1, …, 3),8个方向(即K=8,u=0, 1, … ,7),共32个Gabor核函数。不同频率不同方向的Gabor函数可通过下图表示:
  图片来源:GaborFilter.html
  图片来源:http://www.bmva.ac.uk/bmvc/1997/papers/033/node2.html
  三、代码实现
  Gabor函数是复值函数,因此在运算过程中要分别计算其实部和虚部。代码如下:
  private void CalculateKernel(int Orientation, int Frequency)
  {
  double real, img;
  for(int x = -(GaborWidth-1)/2; x<(GaborWidth-1)/2+1; x++)
  for(int y = -(GaborHeight-1)/2; y<(GaborHeight-1)/2+1; y++)
  {
  real = KernelRealPart(x, y, Orientation, Frequency);
  img = KernelImgPart(x, y, Orientation, Frequency);
  KernelFFT2[(x+(GaborWidth-1)/2) + 256 * (y+(GaborHeight-1)/2)].Re = real;
  KernelFFT2[(x+(GaborWidth-1)/2) + 256 * (y+(GaborHeight-1)/2)].Im = img;
  }
  }
  private double KernelRealPart(int x, int y, int Orientation, int Frequency)
  {
  double U, V;
  double Sigma, Kv, Qu;
  double tmp1, tmp2;
  U = Orientation;
  V = Frequency;
  Sigma = 2 * Math.PI * Math.PI;
  Kv = Math.PI * Math.Exp((-(V+2)/2)*Math.Log(2, Math.E));
  Qu = U * Math.PI / 8;
  tmp1 = Math.Exp(-(Kv * Kv * ( x*x + y*y)/(2 * Sigma)));
  tmp2 = Math.Cos(Kv * Math.Cos(Qu) * x + Kv * Math.Sin(Qu) * y) – Math.Exp(-(Sigma/2));
  return tmp1 * tmp2 * Kv * Kv / Sigma;
  }
  private double KernelImgPart(int x, int y, int Orientation, int Frequency)
  {
  double U, V;
  double Sigma, Kv, Qu;
  double tmp1, tmp2;
  U = Orientation;
  V = Frequency;
  Sigma = 2 * Math.PI * Math.PI;
  Kv = Math.PI * Math.Exp((-(V+2)/2)*Math.Log(2, Math.E));
  Qu = U * Math.PI / 8;
  tmp1 = Math.Exp(-(Kv * Kv * ( x*x + y*y)/(2 * Sigma)));
  tmp2 = Math.Sin(Kv * Math.Cos(Qu) * x + Kv * Math.Sin(Qu) * y) – Math.Exp(-(Sigma/2));
  return tmp1 * tmp2 * Kv * Kv / Sigma;
  }
  有了Gabor核函数后就可以采用前文中提到的“离散二维叠加和卷积”或“快速傅立叶变换卷积”的方法求解Gabor变换,并对变换结果求均值和方差作为提取的特征。32个Gabor核函数对应32次变换可以提取64个特征(包括均值和方差)。由于整个变换过程代码比较复杂,这里仅提供测试代码供下载。该代码仅计算了一个101×101尺寸的Gabor函数变换,得到均值和方差。代码采用两种卷积计算方式,从结果中可以看出,快速傅立叶变换卷积的效率是离散二维叠加和卷积的近50倍。
———————————————————————–

最近忙着论文,需要Gabor滤波代码,可是网上总找不到合适的代码,于是就自己编了一个,不当之处请指点。参考论文为 L. Wiskott,J. M. Fellous,N. Kruger,C. v. d.Malsburg. Face Recognition by Elastic Bunch Graph Matching,IEEE Trans. On PAMI,Vol.19,No.7,pp775-779,1997

首先实现滤波器:

function [bank] = do_createfilterbank(imsize,varargin)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 函数实现:创建Gabor 滤波组
%
%%% 必选参数:
%   imsize – 图像大小
%%% 可选参数:
%   freqnum — 频率数目
%   orientnum — 方向数目
%   f       —   频率域中的采样步长
%   kmax    —   最大的采样频率
%   sigma   —   高斯窗的宽度与波向量长度的比率
%
%%% 返回结果:
%   bank
%           .freq        —     滤波频率
%           .orient      —     滤波方向
%           .filter      —     Gabor滤波
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

conf = struct(…,
    ‘freqnum’,3,…
    ‘orientnum’,6,…
    ‘f’,sqrt(2),…
    ‘kmax’,(pi/2),…
    ’sigma’,(sqrt(2)*pi) …
    );

conf = do_getargm(conf,varargin);

bank = cell(1,conf.freqnum*conf.orientnum);
for f0=1:conf.freqnum
    fprintf(‘处理频率 %d /n’, f0);
    for o0=1:conf.orientnum
        [filter_,freq_,orient_] = do_gabor(imsize,(f0-1),(o0-1),conf.kmax,conf.f,conf.sigma,conf.orientnum);
        bank{(f0-1)*conf.orientnum + o0}.freq = freq_; %以orient增序排列
        bank{(f0-1)*conf.orientnum + o0}.filter = filter_;
        bank{(f0-1)*conf.orientnum + o0}.orient = orient_;
    end
end

for ind = 1:length(bank)
    bank{ind}.filter=fftshift(bank{ind}.filter);
end

function [filter,Kv,Phiu] = do_gabor (imsize,nu,mu,Kmax,f,sigma,orientnum)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 函数实现: 创建Gabor滤波
%
%%% 参数:
%   imsize     : 滤波的大小(即图像大小)
%   nu         : 频率编号 [0 ...freqnum-1];
%   mu         : 方向编号 [0...orientnum-1]
%   Kmax       : 最大的采样频率
%   f          : 频率域中的采样步长
%   sigma      : 高斯窗的宽度与波向量长度的比率
%   orientnum : 方向总数
%
%%% 返回值:
%   filter :    滤波
%   Kv    :    频率大小
%   Phiu :    方向大小
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rows = imsize(1);
cols = imsize(2);
minrow = fix(-rows/2);
mincol = fix(-cols/2);
row = minrow + (0:rows-1);
col = mincol + (0:cols-1);
[X,Y] = meshgrid(col,row);

Kv = Kmax/f^nu;
Phiu = pi * mu /orientnum;
K = Kv * exp(i * Phiu);

F1 = (Kv ^ 2)/ (sigma^2) * exp(-Kv^2 * abs(X.^2 + Y.^2) / (2*sigma^2)) ;
F2 = exp(i * (real(K) * X + imag(K) * Y)) – exp(-sigma^2/2);
filter = F1.* F2;

Gabor 滤波实现(1)已经创建了Gabor滤波组,现在可以使用该滤波组对图像进行转换,得到振幅和相位。

function [result] = do_filterwithbank(im,bank)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 函数实现:对图像使用Gabor滤波组进行转换换
%
%%% 参数:
%   im       — 被转换的图像
%   bank        — 由函数do_createfilterbank得到的滤波组
%
%%% 返回:
%   result                     — 图像被转换后的结果
%       .amplitudes            — 不同像素点的振幅向量
%       .phases                — 不同像素点的相位向量
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[N1 N2] = size(im);
N3 = length(bank);
phases = zeros(N1,N2,N3);
amplitudes = zeros(N1,N2,N3);
imagefft = fft2(im);

for ind = 1:N3
    fprintf(‘正在处理滤波 %d /n’,ind);
     temp = ifft2(imagefft .* bank{ind}.filter);
     phases(:,:,ind) = angle(temp);
     amplitudes(:,:,ind) = abs(temp);
end
result.phases = phases;
result.amplitudes = amplitudes;

 

整个程序可以如下使用。 im = imread(‘image.jpg’); im = rgb2gray(im); bank = do_createfilterbank(size(im)); result = do_filterwithbank(im,bank);

你可能感兴趣的:(function,filter,Graph,IM,n2,fft)