#leetcode#Longest Palindromic Substring

Longest Palindromic Substring

  Total Accepted: 55519  Total Submissions: 267875 My Submissions
Question  Solution 

Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.






思路, dp,用一个二维数组来记录当前下标 i, j,之间是否是palindromic,
如何判断是呢? 首先 i, j 位置的character 必须一样, 然后或者dp[i + 1][j - 1]== true, 或者 j - i <= 2, j - i == 2的时候比如 aba, 中间只隔
着一个元素, 肯定是回文。
reference : http://codeganker.blogspot.com/2014/02/longest-palindromic-substring-leetcode.html
public class Solution {
    public String longestPalindrome(String s) {
        if(s == null || s.length() == 0)
            return "";
        
        int start = 0;
        int len = 0;
        boolean[][] dp = new boolean[s.length()][s.length()];
        for(int i = s.length() - 1; i >= 0 ; i--){
            for(int j = i; j < s.length(); j++){
                if(i == j){
                    dp[i][j] = true;
                }else{
                    if(i < s.length() - 1 && j > 0){
                    dp[i][j] = s.charAt(i) == s.charAt(j) && (dp[i + 1][j - 1] || j - i <= 2); 
                    }
                }
                
                // dp[i][j] = s.charAt(i) == s.charAt(j) && (dp[i + 1][j - 1] || j - i <= 2);
                
                //dp[i][j] = s.charAt(i) == s.charAt(j) && ( j - i <= 2 || dp[i + 1][j - 1]);
                if(dp[i][j]){
                    if(j - i + 1 > len){
                        len = j - i + 1;
                        start = i;
                    }
                }
            }
        }
        
        return s.substring(start, start + len);
    }
}


上面的代码其实写复杂了,用下面一行就可以完成dp[i][j]的赋值了, 但是要注意先判断是否  j - i <= 2, 如果 或 的操作顺序反过来, “a” 这个test case就过不了。。
dp[i][j] = s.charAt(i) == s.charAt(j) && ( j - i <= 2 || dp[i + 1][j - 1]);

你可能感兴趣的:(LeetCode)