IEEE浮点数表示法

导读:

  关键字 IEEE 浮点数

  出处

  月初还在上班的时候,就天天盼望着过年放长假,然而终于熬到了过年,却发现自己的12天的长假将在碌碌无为中度过,朋友们又一个接一个的远去,心里真是拔凉拔凉的啊!最近版上的人气有点低落,连违规率(不敢说犯罪率哈,怕被人砍)都下降了不少,我想在春节这档子这是免不了的,论坛上应该有不上工作的朋友可能都回家团聚了。那像我这种无家可归的人除了眼馋别人的幸福,那就只有向仍然全力支持着我们C++/面向对象这个大家庭的兄弟姐妹们拜个年,祝来年薪水猛涨,职位高升,身体健康,家庭幸福!

  最近一段时间看到版上关于C++里浮点变量精度的讨论比较多,那么我就给对这个问题有疑惑的人详细的讲解一下intel的处理器上是如何处理浮点数的。为了能更方便的讲解,我在这里只以float型为例,从存储结构和算法上来讲,double和float是一样的,不一样的地方仅仅是float是32位的,double是64位的,所以double能存储更高的精度。还要说的一点是文章和程序一样,兼容性是有一定范围的,所以你想要完全读懂本文,你最好对二进制、十进制、十六进制的转换有比较深入的了解,了解数据在内存中的存储结构,并且会使用VC.net编译简单的控制台程序。OK,下面我们开始。

  大家都知道任何数据在内存中都是以二进制(1或着0)顺序存储的,每一个1或着0被称为1位,而在x86CPU上一个字节是8位。比如一个16位(2字节)的short int型变量的值是1156,那么它的二进制表达就是:00000100 10000100。由于Intel CPU的架构是Little Endian(请参数机算机原理相关知识),所以它是按字节倒序存储的,那么就因该是这样:10000100 00000100,这就是定点数1156在内存中的结构。

  那么浮点数是如何存储的呢?目前已知的所有的C/C++编译器都是按照IEEE(国际电子电器工程师协会)制定的IEEE 浮点数表示法来进行运算的。这种结构是一种科学表示法,用符号(正或负)、指数和尾数来表示,底数被确定为2,也就是说是把一个浮点数表示为尾数乘以2的指数次方再加上符号。下面来看一下具体的float的规格:

  float

  共计32位,折合4字节

  由最高到最低位分别是第31、30、29、……、0位

  31位是符号位,1表示该数为负,0反之。

  30-23位,一共8位是指数位。

  22-0位,一共23位是尾数位。

  每8位分为一组,分成4组,分别是A组、B组、C组、D组。

  每一组是一个字节,在内存中逆序存储,即:DCBA

  我们先不考虑逆序存储的问题,因为那样会把读者彻底搞晕,所以我先按照顺序的来讲,最后再把他们翻过来就行了。

  现在让我们按照IEEE浮点数表示法,一步步的将float型浮点数12345.0f转换为十六进制代码。在处理这种不带小数的浮点数时,直接将整数部转化为二进制表示:1 11100010 01000000也可以这样表示:11110001001000000.0然后将小数点向左移,一直移到离最高位只有1位,就是最高位的1:1.11100010010000000一共移动了16位,在布耳运算中小数点每向左移一位就等于在以2为底的科学计算法表示中指数+1,所以原数就等于这样:1.11100010010000000 * ( 2 ^ 16 )好了,现在我们要的尾数和指数都出来了。显而易见,最高位永远是1,因为你不可能把买了16个鸡蛋说成是买了0016个鸡蛋吧?(呵呵,可别拿你买的臭鸡蛋甩我~),所以这个1我们还有必要保留他吗?(众:没有!)好的,我们删掉他。这样尾数的二进制就变成了:11100010010000000最后在尾数的后面补0,一直到补够23位:11100010010000000000000(MD,这些个0差点没把我数的背过气去~)

  再回来看指数,一共8位,可以表示范围是0 - 255的无符号整数,也可以表示-128 - 127的有符号整数。但因为指数是可以为负的,所以为了统一把十进制的整数化为二进制时,都先加上127,在这里,我们的16加上127后就变成了143,二进制表示为:10001111

  12345.0f这个数是正的,所以符号位是0,那么我们按照前面讲的格式把它拼起来:

  0 10001111 11100010010000000000000

  01000111 11110001 00100000 00000000

  再转化为16进制为:47 F1 20 00,最后把它翻过来,就成了:00 20 F1 47。

  现在你自己把54321.0f转为二进制表示,自己动手练一下!

  有了上面的基础后,下面我再举一个带小数的例子来看一下为什么会出现精度问题。

  按照IEEE浮点数表示法,将float型浮点数123.456f转换为十六进制代码。对于这种带小数的就需要把整数部和小数部分开处理。整数部直接化二进制:100100011。小数部的处理比较麻烦一些,也不太好讲,可能反着讲效果好一点,比如有一个十进制纯小数0.57826,那么5是十分位,位阶是1/10;7是百分位,位阶是1/100;8是千分位,位阶是1/1000……,这些位阶分母的关系是10^1、10^2、10^3……,现假设每一位的序列是{S1、S2、S3、……、Sn},在这里就是5、7、8、2、6,而这个纯小数就可以这样表示:n = S1 * ( 1 / ( 10 ^ 1 ) ) + S2 * ( 1 / ( 10 ^ 2 ) ) + S3 * ( 1 / ( 10 ^ 3 ) ) + …… + Sn * ( 1 / ( 10 ^ n ) )。把这个公式推广到b进制纯小数中就是这样:

  n = S1 * ( 1 / ( b ^ 1 ) ) + S2 * ( 1 / ( b ^ 2 ) ) + S3 * ( 1 / ( b ^ 3 ) ) + …… + Sn * ( 1 / ( b ^ n ) )

  天哪,可恶的数学,我怎么快成了数学老师了!没办法,为了广大编程爱好者的切身利益,喝口水继续!现在一个二进制纯小数比如0.100101011就应该比较好理解了,这个数的位阶序列就因该是1/(2^1)、1/(2^2)、1/(2^3)、1/(2^4),即0.5、0.25、0.125、0.0625……。乘以S序列中的1或着0算出每一项再相加就可以得出原数了。现在你的基础知识因该足够了,再回过头来看0.45这个十进制纯小数,化为该如何表示呢?现在你动手算一下,最好不要先看到答案,这样对你理解有好处。

  

  

  

  

  

  

  我想你已经迫不及待的想要看答案了,因为你发现这跟本算不出来!来看一下步骤:1 / 2 ^1位(为了方便,下面仅用2的指数来表示位),0.456小于位阶值0.5故为0;2位,0.456大于位阶值0.25,该位为1,并将0.45减去0.25得0.206进下一位;3位,0.206大于位阶值0.125,该位为1,并将0.206减去0.125得0.081进下一位;4位,0.081大于0.0625,为1,并将0.081减去0.0625得0.0185进下一位;5位0.0185小于0.03125,为0……问题出来了,即使超过尾数的最大长度23位也除不尽!这就是著名的浮点数精度问题了。不过我在这里不是要给大家讲《数值计算》,用各种方法来提高计算精度,因为那太庞杂了,恐怕我讲上一年也理不清个头绪啊。我在这里就仅把浮点数表示法讲清楚便达到目的了。

  OK,我们继续。嗯,刚说哪了?哦对对,那个数还没转完呢,反正最后一直求也求不尽,加上前面的整数部算够24位就行了:1111011.01110100101111001。某BC问:“不是23位吗?”我:“倒,不是说过了要把第一个1去掉吗?当然要加一位喽!”现在开始向左移小数点,大家和我一起移,众:“1、2、3……”好了,一共移了6位,6加上127得131(怎么跟教小学生似的?呵呵~),二进制表示为:10000101,符号位为……再……不说了,越说越啰嗦,大家自己看吧:

  0 10000101 11101101110100101111001

  42 F6 E9 79

  79 E9 F6 42

  下面再来讲如何将纯小数转化为十六进制。对于纯小数,比如0.0456,我们需要把他规格化,变为1.xxxx * (2 ^ n )的型式,要求得纯小数X对应的n可用下面的公式:

  n = int( 1 + log (2)X );

  0.0456我们可以表示为1.4592乘以以2为底的-5次方的幂,即1.4592 * ( 2 ^ -5 )。转化为这样形式后,再按照上面第二个例子里的流程处理:

  1. 01110101100011100010001

  去掉第一个1

  01110101100011100010001

  -5 + 127 = 122

  0 01111010 01110101100011100010001

  最后:

  11 C7 3A 3D

  另外不得不提到的一点是0.0f对应的十六进制是00 00 00 00,记住就可以了。

  最后贴一个可以分析并输出浮点数结构的函数源代码,有兴趣的自己看看吧:

  // 输入4个字节的浮点数内存数据

  void DecodeFloat( BYTE pByte[4] )

  {

  printf( "原始(十进制):%d %d %d %d/n" , (int)pByte[0],

  (int)pByte[1], (int)pByte[2], (int)pByte[3] );

  printf( "翻转(十进制):%d %d %d %d/n" , (int)pByte[3],

  (int)pByte[2], (int)pByte[1], (int)pByte[0] );

  bitset<32> bitAll( *(ULONG*)pByte );

  string strBinary = bitAll.to_string , allocator ="">();

  strBinary.insert( 9, " " );

  strBinary.insert( 1, " " );

  cout <<"二进制:" < <
  cout <<"符号:" <<( bitAll[31] ? "-" : "+" ) <
  bitset<32> bitTemp;

  bitTemp = bitAll;

  bitTemp <<= 1;

  LONG ulExponent = 0;

  for ( int i = 0; i <8; i++ )

  {

  ulExponent |= ( bitTemp[ 31 - i ] <<( 7 - i ) );

  }

  ulExponent -= 127;

  cout <<"指数(十进制):" < <
  bitTemp = bitAll;

  bitTemp <<= 9;

  float fMantissa = 1.0f;

  for ( int i = 0; i <23; i++ )

  {

  bool b = bitTemp[ 31 - i ];

  fMantissa += ( (float)bitTemp[ 31 - i ] / (float)( 2 <
  }

  cout <<"尾数(十进制):" < <
  float fPow;

  if ( ulExponent >= 0 )

  {

  fPow = (float)( 2 <<( ulExponent - 1 ) );

  }

  else

  {

  fPow = 1.0f / (float)( 2 <<( -1 - ulExponent ) );

  }

  cout <<"运算结果:" < <
  }

  累死了,我才发现这篇文章虽然短,然而确是最难写的。上帝,我也不是机算机,然而为什么我满眼都只有1和0?看来我也快成了黑客帝国里的那个看通迅员了……希望大家能不辜负我的一翻辛苦,帮忙up吧!

  Creamdog 于

  春节前夕 2004年1月18 下午5点完工

  

  

  

  

  

  

  

  

  

  

  

  另注:

  非常感谢大家的支持!

  很长时间以来,我一直想对于大家对这篇文章所提出的问题做一些回答。但总是出于时间和其它的问题而初提著又意冷,感到十分抱歉。

  我没有看过IEEE对于浮点数表示的详细资料,对于这些转换方法是结合我多年工作经验和编程技术,加之潜心编写测试代码、调试内存所得出的。因此这篇文章里存在问题是必然的,但我的初衷是给大家讲清楚“计算机表示浮点数为什么会存在精度问题”,而具体的转换方法并没有深究,只是将一般的转换规律做了一些阐释,对特殊情况极少提及。

  我在这里非常感谢对文章提出问题的Combative(力争上游)、 yaoxinyan()、sharkhuang(爱情和程序都读不懂)三位朋友,他们指出了一些文章中的错误,并让我了解到不少细节问题,这些对于我和所有阅读这篇文章的人都是非常有帮助的!

  由于原文中出错的地方不在少数,有些问题还比较严重,但以我目前所掌握的资料还不足以将这些问题一一纠正,所以只能希望其它朋友在阅读时还需稍加留意,掌握大意即可,不必深究,以免对以后的程序设计的学习造成不良影响,抱歉!



本文转自

http://dev.csdn.net/develop/article/28/28201.shtm
,>

你可能感兴趣的:(C++,算法,String,存储,float,编译器)