本文转自:http://blog.csdn.net/siliang13/article/details/16805421
谢谢博主!
opencv中的compareHist函数是用来计算两个直方图相似度,计算的度量方法有4个,分别为Correlation ( CV_COMP_CORREL )相关性,Chi-Square ( CV_COMP_CHISQR ) 卡方,Intersection ( method=CV_COMP_INTERSECT )交集法,Bhattacharyya distance ( CV_COMP_BHATTACHARYYA )常态分布比对的Bhattacharyya距离法。
compareHist函数返回一个数值,相关性方法范围为0到1,1为最好匹配,卡方法和Bhattacharyya距离法是值为0最好,而交集法为值越大越好。
代码如下:
[cpp] view plain copy print ?
- #include "opencv2/highgui/highgui.hpp"
- #include "opencv2/imgproc/imgproc.hpp"
- #include <iostream>
- #include <stdio.h>
- using namespace std;
- using namespace cv;
-
- int main( int argc, char** argv )
- {
- Mat src_base, hsv_base;
- Mat src_test1, hsv_test1;
- Mat src_test2, hsv_test2;
- Mat hsv_half_down;
-
-
- src_base = imread( argv[1], 1 );
- src_test1 = imread( argv[2], 1 );
- src_test2 = imread( argv[3], 1 );
-
- cvtColor( src_base, hsv_base, CV_BGR2HSV );
- cvtColor( src_test1, hsv_test1, CV_BGR2HSV );
- cvtColor( src_test2, hsv_test2, CV_BGR2HSV );
- hsv_half_down = hsv_base( Range( hsv_base.rows/2, hsv_base.rows - 1 ), Range( 0, hsv_base.cols - 1 ) );
-
- int h_bins = 50; int s_bins = 60;
- int histSize[] = { h_bins, s_bins };
-
- float h_ranges[] = { 0, 256 };
- float s_ranges[] = { 0, 180 };
- const float* ranges[] = { h_ranges, s_ranges };
-
- int channels[] = { 0, 1 };
-
- MatND hist_base;
- MatND hist_half_down;
- MatND hist_test1;
- MatND hist_test2;
-
- calcHist( &hsv_base, 1, channels, Mat(), hist_base, 2, histSize, ranges, true, false );
- normalize( hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat() );
- calcHist( &hsv_half_down, 1, channels, Mat(), hist_half_down, 2, histSize, ranges, true, false );
- normalize( hist_half_down, hist_half_down, 0, 1, NORM_MINMAX, -1, Mat() );
- calcHist( &hsv_test1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false );
- normalize( hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat() );
- calcHist( &hsv_test2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false );
- normalize( hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat() );
-
- for( int i = 0; i < 4; i++ )
- { int compare_method = i;
- double base_base = compareHist( hist_base, hist_base, compare_method );
- double base_half = compareHist( hist_base, hist_half_down, compare_method );
- double base_test1 = compareHist( hist_base, hist_test1, compare_method );
- double base_test2 = compareHist( hist_base, hist_test2, compare_method );
- printf( " Method [%d] Perfect, Base-Half, Base-Test(1), Base-Test(2) : %f, %f, %f, %f \n", i, base_base, base_half ,base_test1,base_test2);
- }
- printf( "Done \n" );
- return 0;
- }
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
using namespace std;
using namespace cv;
/** @function main */
int main( int argc, char** argv )
{
Mat src_base, hsv_base;
Mat src_test1, hsv_test1;
Mat src_test2, hsv_test2;
Mat hsv_half_down;
/// Load three images with different environment settings
src_base = imread( argv[1], 1 );
src_test1 = imread( argv[2], 1 );
src_test2 = imread( argv[3], 1 );
/// Convert to HSV
cvtColor( src_base, hsv_base, CV_BGR2HSV );
cvtColor( src_test1, hsv_test1, CV_BGR2HSV );
cvtColor( src_test2, hsv_test2, CV_BGR2HSV );
hsv_half_down = hsv_base( Range( hsv_base.rows/2, hsv_base.rows - 1 ), Range( 0, hsv_base.cols - 1 ) );
/// Using 30 bins for hue and 32 for saturation
int h_bins = 50; int s_bins = 60;
int histSize[] = { h_bins, s_bins };
// hue varies from 0 to 256, saturation from 0 to 180
float h_ranges[] = { 0, 256 };
float s_ranges[] = { 0, 180 };
const float* ranges[] = { h_ranges, s_ranges };
// Use the o-th and 1-st channels
int channels[] = { 0, 1 };
/// Histograms
MatND hist_base;
MatND hist_half_down;
MatND hist_test1;
MatND hist_test2;
/// Calculate the histograms for the HSV images
calcHist( &hsv_base, 1, channels, Mat(), hist_base, 2, histSize, ranges, true, false );
normalize( hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat() );
calcHist( &hsv_half_down, 1, channels, Mat(), hist_half_down, 2, histSize, ranges, true, false );
normalize( hist_half_down, hist_half_down, 0, 1, NORM_MINMAX, -1, Mat() );
calcHist( &hsv_test1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false );
normalize( hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat() );
calcHist( &hsv_test2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false );
normalize( hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat() );
/// Apply the histogram comparison methods
for( int i = 0; i < 4; i++ )
{ int compare_method = i;
double base_base = compareHist( hist_base, hist_base, compare_method );
double base_half = compareHist( hist_base, hist_half_down, compare_method );
double base_test1 = compareHist( hist_base, hist_test1, compare_method );
double base_test2 = compareHist( hist_base, hist_test2, compare_method );
printf( " Method [%d] Perfect, Base-Half, Base-Test(1), Base-Test(2) : %f, %f, %f, %f \n", i, base_base, base_half ,base_test1,base_test2);
}
printf( "Done \n" );
return 0;
}