You are given an array x of n
positive numbers. You start at point (0,0)
and moves x[0]
metres to the north, then x[1]
metres to the west, x[2]
metres to the south,x[3]
metres to the east and so on. In other words, after each move your direction changes counter-clockwise.
Write a one-pass algorithm with O(1)
extra space to determine, if your path crosses itself, or not.
Example 1:
Given x = [2, 1, 1, 2]
,
┌───┐
│ │
└───┼──>
│
Return true (self crossing)
Example 2:
Given x = [1, 2, 3, 4]
,
┌──────┐
│ │
│
│
└────────────>
Return false (not self crossing)
Example 3:
Given x = [1, 1, 1, 1]
,
┌───┐
│ │
└───┼>
Return true (self crossing)
注意走的方向是一定的,所以如果没有环的话是往外扩展的回型圈,或者是向内的。
如果出现环可能有三种情况如下。
class Solution { //3 case public: bool isSelfCrossing(vector<int>& x) { int m = x.size(); for(int i=0; i<m; ++i){ if(i>=3 && x[i]>=x[i-2] && x[i-3]>=x[i-1]) return true; if(i>=4 && x[i-1]==x[i-3] && x[i]+x[i-4]>=x[i-2]) return true; if(i>=5 && x[i-3]>x[i-1] && x[i-2]>x[i-4] && x[i]+x[i-4]>=x[i-2] && x[i-1]+x[i-5]>=x[i-3]) return true; } return false; } };