题目链接:http://codeforces.com/contest/343/problem/D
题意:给定一棵树(给定图一定是树)
1、把v点及其子树灌上水
2、把v点及v到根的路径去掉水
3、询问v点是否有水
思路:
dfs序(不是欧拉序列)把树转成dfs_clock
那么对于点v 出现的时间in[v]和消失的时间out[v] ,一定会把v子树下所有节点都夹在[ in[v], out[v] ]之中,则操作1就是把 [in[v], out[v]]改成1
把路径去掉水,显然是不存在这样直接到达根部的链,所以单点更新 in[v] = 0,若询问[in[u], out[u]]时 区间内存在一个0,则u子树下存在0,即u是没有水的。
注意的是,此时如果把u这个区间灌上水,则会把v这个去水效果去掉,即在线段树上找不到痕迹,所以把 Father[u] 这个点单点更新成0。
AC1:
#include<stdio.h> #include<iostream> #include<string.h> #include<algorithm> #include<vector> #include<set> using namespace std; #define N 510000 #define L(x) (x<<1) #define R(x) (x<<1|1) inline int Mid(int a,int b){return (a+b)>>1;} struct Edge{ int from, to, nex; }edge[N<<1]; int head[N], edgenum; void add(int u,int v){ Edge E={u,v,head[u]}; edge[edgenum] = E; head[u] = edgenum++; } struct node{ int l,r,minn; }tree[N<<2]; void push_up(int id){ tree[id].minn = min(tree[id].minn,min(tree[L(id)].minn,tree[R(id)].minn)); } void push_down(int id){ if(tree[id].l==tree[id].r)return; if(tree[id].minn){ tree[L(id)].minn = tree[R(id)].minn = 1; } } void build(int l,int r,int id){ tree[id].l = l, tree[id].r = r; tree[id].minn = 0; if(l==r)return ; int mid = Mid(l,r); build(l,mid,L(id)); build(mid+1,r,R(id)); } void updata_point(int pos,int id){ push_down(id); if(tree[id].l==tree[id].r){ tree[id].minn = 0; return; } int mid = Mid(tree[id].l,tree[id].r); if(pos<=mid) updata_point(pos,L(id)); else updata_point(pos,R(id)); push_up(id); } void updata_inter(int l,int r,int id){ push_down(id); if(l == tree[id].l && tree[id].r == r){ tree[id].minn = 1; return ; } int mid = Mid(tree[id].l, tree[id].r); if(mid<l) updata_inter(l,r,R(id)); else if(r<=mid) updata_inter(l,r,L(id)); else { updata_inter(l,mid,L(id)); updata_inter(mid+1,r,R(id)); } push_up(id); } int query(int l,int r,int id){ push_down(id); if(l==tree[id].l && tree[id].r == r) return tree[id].minn; int mid = Mid(tree[id].l,tree[id].r); if(mid<l) return query(l,r,R(id)); else if(r<=mid) return query(l,r,L(id)); else return min(query(l,mid,L(id)),query(mid+1,r,R(id))); } int n; int in[N], out[N], Time, Father[N]; void dfs(int u,int fa){ Father[u] = fa; in[u] = ++Time; for(int i = head[u]; ~i; i = edge[i].nex){ int v = edge[i].to; if(v==fa)continue; dfs(v,u); } out[u] = Time; } void init(){ memset(head, -1, sizeof head);edgenum=0; } int main(){ int i, j, u, v, que; while(~scanf("%d",&n)){ init(); for(i=1;i<n;i++){ scanf("%d %d",&u,&v); add(u,v); add(v,u); } Time = 0; dfs(1,-1); build(1,Time,1); scanf("%d",&que); while(que--){ scanf("%d %d",&u,&v); if(u==1){ int tmp = query(in[v],out[v],1); updata_inter(in[v],out[v],1); if(Father[v]!=-1 && tmp==0) updata_point(in[Father[v]],1); } else if(u==2){ updata_point(in[v],1); } else printf("%d\n",query(in[v],out[v],1)); } } return 0; } /* 5 1 2 5 1 4 2 2 3 12 1 1 2 3 3 1 3 2 3 3 3 4 1 2 2 4 3 1 3 3 3 4 3 5 */
#include<stdio.h> #include<iostream> #include<string.h> #include<algorithm> #include<vector> #include<set> using namespace std; #define N 1010000 #define L(x) (x<<1) #define R(x) (x<<1|1) inline int Mid(int a,int b){return (a+b)>>1;} struct Edge{ int from, to, nex; }edge[N<<1]; int head[N], edgenum; void add(int u,int v){ Edge E={u,v,head[u]}; edge[edgenum] = E; head[u] = edgenum++; } struct node{ int l,r,sum,lazy; int size(){return r-l+1;} }tree[N<<2]; void push_up(int id){ if(tree[id].l==tree[id].r)return; tree[id].sum = tree[L(id)].sum + tree[R(id)].sum; } void push_down(int id){ if(tree[id].l==tree[id].r)return; if(tree[id].lazy){ if(tree[id].sum) { tree[L(id)].sum = tree[L(id)].size(); tree[R(id)].sum = tree[R(id)].size(); } else { tree[L(id)].sum = tree[R(id)].sum = 0; } tree[L(id)].lazy = tree[R(id)].lazy = 1; tree[id].lazy = 0; } } void build(int l,int r,int id){ tree[id].l = l, tree[id].r = r; tree[id].sum = tree[id].lazy = 0; if(l==r)return ; int mid = Mid(l,r); build(l,mid,L(id)); build(mid+1,r,R(id)); } void updata(int l,int r,int val,int id){ push_down(id); if(l == tree[id].l && tree[id].r == r){ if(val) { tree[id].sum = tree[id].size(); tree[id].lazy = 1; } else { tree[id].sum = 0; tree[id].lazy = 0; } return ; } int mid = Mid(tree[id].l, tree[id].r); if(mid<l) updata(l,r,val,R(id)); else if(r<=mid) updata(l,r,val,L(id)); else { updata(l,mid,val,L(id)); updata(mid+1,r,val,R(id)); } push_up(id); } int query(int l,int r,int id){ push_down(id); if(l==tree[id].l && tree[id].r == r) return tree[id].sum; int mid = Mid(tree[id].l,tree[id].r); if(mid<l) return query(l,r,R(id)); else if(r<=mid) return query(l,r,L(id)); else return query(l,mid,L(id)) + query(mid+1,r,R(id)); } int n; int in[N], out[N], Time, si[N], pa[N]; void dfs(int u,int fa){ in[u] = ++Time; si[u] = 1; pa[u] = fa; for(int i = head[u]; ~i; i = edge[i].nex){ int v = edge[i].to; if(v==fa)continue; dfs(v,u); si[u] += si[v]; } out[u] = Time; } void init(){ memset(head, -1, sizeof head);edgenum=0; } int main(){ int i, j, u, v, que; while(~scanf("%d",&n)){ init(); for(i=1;i<n;i++){ scanf("%d %d",&u,&v); add(u,v); add(v,u); } Time = 0; dfs(1,-1); build(1,Time,1); scanf("%d",&que); while(que--){ scanf("%d %d",&u,&v); if(u==1){ int tmp = query(in[v],out[v],1); updata(in[v],out[v],1,1); if(tmp!=si[v] && pa[v]!=-1) updata(in[pa[v]],in[pa[v]],0,1); } else if(u==2){ updata(in[v],in[v],0,1); } else printf("%d\n",query(in[v],out[v],1)==si[v]); } } return 0; } /* 5 1 2 5 1 4 2 2 3 12 1 1 2 3 3 1 3 2 3 3 3 4 1 2 2 4 3 1 3 3 3 4 3 5 */