Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 12195 | Accepted: 8656 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
Source
题意:求第n项的斐波那契数对10000求余
题解:快速矩阵幂,首先我们必须要构造出满足符合状态转移的基础矩阵,然而我并不会构造。。。。。。。。(感觉有点像DP推出状态转移方程)
接下来就矩阵乘法,但是明显n太大了,我们需要更高效的算法。这里可以想到使用快速幂加速乘法,我们可以使用倍增的思想去思考快速幂,这样可以在logn的复杂度内完成n次幂的乘法,(这里我终于是理解了快速幂的思想,可能是线段树做多了?)好啦这一题就先这样
这里献上我总结的模板:
#define MAXN 2 #define mod int(1e4) struct Matrix { int mat[MAXN][MAXN]; Matrix() {} Matrix operator*(Matrix const &b)const { Matrix res; memset(res.mat, 0, sizeof(res.mat)); for (int i = 0 ;i < MAXN; i++) for (int j = 0; j < MAXN; j++) for (int k = 0; k < MAXN; k++) res.mat[i][j] = (res.mat[i][j]+this->mat[i][k] * b.mat[k][j])%mod; return res; } }; Matrix pow_mod(Matrix base, int n) { Matrix res; memset(res.mat, 0, sizeof(res.mat)); for (int i = 0; i < MAXN; i++) res.mat[i][i] = 1; while (n > 0) { if (n & 1) res = res*base; base = base*base; n >>= 1; } return res; }
AC代码:
#include<cstdio> #include<cstring> #include<cstdlib> #include<cmath> #include<iostream> #include<algorithm> #include<vector> #include<map> #include<set> #include<queue> #include<string> #include<bitset> #include<utility> #include<functional> #include<iomanip> #include<sstream> #include<ctime> using namespace std; #define MAXN 2 #define mod int(1e4) struct Matrix { int mat[MAXN][MAXN]; Matrix() {} Matrix operator*(Matrix const &b)const { Matrix res; memset(res.mat, 0, sizeof(res.mat)); for (int i = 0 ;i < MAXN; i++) for (int j = 0; j < MAXN; j++) for (int k = 0; k < MAXN; k++) res.mat[i][j] = (res.mat[i][j]+this->mat[i][k] * b.mat[k][j])%mod; return res; } }; Matrix pow_mod(Matrix base, int n) { Matrix res; memset(res.mat, 0, sizeof(res.mat)); for (int i = 0; i < MAXN; i++) res.mat[i][i] = 1; while (n > 0) { if (n & 1) res = res*base; base = base*base; n >>= 1; } return res; } int main() { #ifdef CDZSC freopen("i.txt", "r", stdin); //freopen("o.txt","w",stdout); int _time_jc = clock(); #endif Matrix base; for (int i = 0; i < MAXN; i++) for (int j = 0; j < MAXN; j++) base.mat[i][j] = 1; base.mat[1][1] = 0; int n; while (~scanf("%d", &n)&&n!=-1) { Matrix ans = pow_mod(base, n); printf("%d\n", ans.mat[0][1]); } return 0; }