【篇首语】F#是什么,可以我的另一篇博文。感觉博客网 Anders Cui 的文章很好,就转帖过来。其实还是博客园的博客比较好,CSDN的博客真是烂到家了,我在教育网(上海)根本就打不开,只能用live writer,而且还不能使用html代码,算了,一肚子气。
从 Allen Lee 的《 从C# 3.0到F# 》一文开始,感觉园子里F#正在升温。 Chris Smith 写了一个F#的小系列,这里翻译出来与大家分享。
第一篇,从零开始编写我们的第一个F#程序。
什么是F#,我为何要学它?
F#是一种.NET平台上的 函数式编程 语言。就像C#和VB.NET,F#可以利用.NET的核心类库,如 WPF , WCF , VSTO 等等,通过F#您甚至可以使用 XNA 编写XBox游戏。
仅仅如此并不意味着您应该去学习它。那为何要使用F#呢?作为一种函数式编程语言,F#使得某些领域的编程要比命令式编程(如使用C#)更为容易。并行编程(Parallel Programming)和面向语言编程(Language-Oriented Programming)是其中的两个领域。
如果您曾经编写过.NET应用程序,并感觉自己在努力使用手头的语言表达自己的想法,也许F#就是您在寻找的。
上路
首先得 下载 (F#的最新版本1.9.4.19)和安装。安装程序会在VS2005和VS2008中安装F#的项目系统(项目模板和项模板)。先来创建一个新的F#项目。
然后添加一个新的F#源文件。默认条件下,新建的源文件包含了很多“教学”代码,全部删除,然后输入下面的代码:
#light
let square x = x * x
let numbers = [1 .. 10]
let squares = List.map square numbers
printfn "N^2 = %A" squares
open System
Console.ReadKey(true)
按下F5运行程序,您会看到:
这些并没有太多让人兴奋的。我们来逐行的分析下代码,看看到底有什么不同之处,在此之前先介绍下VFSI。
Visual Studio中的F#交互(Interactive)
F#交互控制台(F# Interactive Console, FSI)采用的是“REPL loop”模式,即Read-Evaluate-Print-Loop。也就是输入一段代码,编译并执行,然后输出结果。通过它您可以快速地开发和测试程序。要在VS中启用FSI,打开Add-in Manager窗口。
选中“F# Inactive for Visual Studio”。然后,选中程序的前两行代码:
接着按下Alt+Enter(实际上,如果FSI还么有打开,需要按两次Alt+Enter)。这时会看到出现了一个工具窗口:
我们刚才做的事情是将代码片段直接发送给FSI会话,FSI将结果输出。结果是函数“square”的定义,它接受int类型参数,返回类型也是 int。
接下来在FSI窗口输入“List.map square [1 .. 2 .. 10];;”。“;;”是告诉FSI停止阅读程序,立即进行求值。
> List.map square [1 .. 2 .. 10];;
val it : int list = [1; 9; 25; 49; 81]
现在我们可以方便地通过FSI来学习F#了,马上来看看我们的程序究竟做了什么吧。不过仍建议您在VS源代码编辑器中输入代码,使用 “Select(原文是Highlight,感觉Select更贴切) + Alt + Enter”将代码片段发送至FSI。
语言基础
#light(OCaml兼容)
F#源自OCaml,具有交互编译OCaml的能力,也就是可以不经修改即可编译简单的OCaml程序。这种能力也带来了令人讨厌的语法。#light(发音为hash-light)是一个编译器指令,可以简化F#的语法。
强烈建议您保持使用#light,您会发现,在大多数F#代码片段中要么会声明它,要么是假定已经声明了它。
let square x = x * x(类型推演)
这行代码定义了一个函数:square,它会求得数字x的平方。考虑一下C#中等价的代码:
public static int square(int x)
{
return x * x;
}
在C#中,您需要制定参数和返回值的类型信息,而F#则帮您搞定了。这种行为称为类型推演(Type Inference) 。
从函数的签名,F#可以知道“square”函数接受一个参数“x”,并且函数返回“x * x”(在函数体内的最后一次求值将作为返回值,因此无须return关键字)。因为很多基元类型都支持*操作,比如byte,uint64,double 等,F#默认会使用int类型,有符号的32位整数。
现在考虑下面的代码,它为其中的一个参数提供了“类型注解(type annotation) ”,告诉编译器期望的类型。因为x标为“string”,“+”操作只定义在两个string间,因此y也必须为string类型,返回值是两个字符串拼接的结果。
> let concat (x : string) y = x + y;;
val concat : string -> string -> string
> concat "Hello, " "World!";;
val it : string = "Hello, World!"
后面我们将讨论类型推演的更多高级主题,现在您只要享受F#编译器的智能带来的方便就好了。
let numbers = [1 .. 10](F# lists)
这行代码声明了一个列表(list),其元素是从1至10。如果您用的是[|1 .. 10|],F#会创建一个.NET的整型数组(array)。而在F#中,列表是一个不可变的链表(linked list),这也是函数式编程的基础。试着将这些代码输入到FSI中(记住添加“;;”):
// Define a list
let vowels = ['e'; 'i'; 'o'; 'u']
// Attach item to front (cons)
let cons = 'a' :: vowels
// Concat two lists
let sometimes = vowels @ ['y']
我将在本系列的第二篇中更深入地介绍列表。
let squares = List.map square numbers
现在我们有了一个整型列表(numbers)和一个函数(square),我们希望创建一个新的列表,它的每一项是对numbers的每一项进行 square运算后的结果。
幸运的是,List.map可以做到。考虑下面的例子:
> List.map (fun x -> x % 2 = 0) [1 .. 10];;
val it : bool list
= [false; true; false; true; false; true; false; true; false; true]
代码(fun x -> x % 2 = 0)定义了一个匿名函数,称为 lamdba 表达式 ,接受一个参数x,返回值为表达式“x % 2 = 0”的结果,也就是判断x是否为偶数。
注意我们刚才做的——将一个函数作为参数传递给另一个函数。在C#中这个并不容易。但在F#可以很清楚地表达出来,而且代码很简洁。将函数像值一样传递被称为“一等函数(first order functions)”,也是函数式编程的基础。
printfn "N^2 = %A" squares
printf是打印文本到控制台窗口的一种简单而又类型安全的方式。要更好地了解printf,考虑下面的例子,它打印一个整数、浮点数和字符串。
> printfn "%d * %f = %s" 5 0.75 ((5.0 * 0.75).ToString());;
5 * 0.750000 = 3.75
val it : unit = ()
%d,%f,%s分别是int、float、string的占位符。%A则可用于打印任何值。
Console.ReadKey(true) (.NET互操作)
我们程序的最后一行只是简单地调用了System.Console.ReadKey方法,这样可以让程序在关闭其暂停。因为F#建立在.NET的基础上,您可以在F#中调用任何.NET类库——从正则表达式到WinForms。代码“open System”用于打开命名空间,类似于C#中的using。
现在我们已经有了F#的基础知识,可以继续学习更有趣的基础类型和F#概念了,希望您关注第二篇文章!
原文链接: http://blogs.msdn.com/chrsmith/archive/2008/05/02/f-in-20-minutes-part-i.aspx 。
这是系列文章的第二篇,读完本文后,您应当能够具备相当的阅读F#代码的能力。如果您没有看过第一篇,请看 这里 。
1.不可变性(Immutability)
您也许已经注意到,我一直使用“值(value)”来表示一个标识符(identifier),而不是“变量(variable)”。这是由于默认情况下,F#中的类型是不可变的(immutable),也就是说,一经创建即不可修改。看起来这是一个很大的限制,但是不可变性可以避免 某种类型的bug 。另外,不可变的数据天然地具备线程安全的特性,这意味着您无需在处理并行情况时担心同步锁的发生。我将在系列的第三篇中介绍异步编程。
如果您确实需要修改数据,可使用F#的mutable关键字,它会创建一个变量(而不是值)。我们可以通过左箭头操作符(<-)来修改变量的值。
> let mutable x = "the original value.";;
val mutable x : string
> printfn "x's value is '%s'" x;;
x's value is 'the original value.'
val it : unit = ()
> x <- "the new one.";;
val it : unit = ()
> printfn "x's value is now '%s'" x;;
x's value is now 'the new one.'
val it : unit = ()
2. 引用值(Reference values,Microsoft.FSharp.Core.Ref<_>)
引用值是另一种表示可修改数据的方式。但它不是将变量存储在堆栈(stack),引用值其实是一个指向存储在堆(heap)上的变量的指针(pointer)。在F#中使用可修改的值时会有些限制(比如不可以在内部lambda表达式中使用)。而ref对象则可被安全地传递,因为它们是不可变的record值(只是它有一个可修改的字段)。
使用引用值时,用“:=”赋一个新值,使用“!”进行解引用。
> let refCell = ref 42;;
val refCell : int ref
> refCell := -1;;
val it : unit = ()
> !refCell;;
val it : int = –1
3. 模块(Modules)
在 上篇文章 中,我只是随意地声明了几个值和函数。您也许会问,“要把它们放在哪里呢?”,因为在C#中所有一切都要属于相应的类。尽管在F#中,我们仍然可以用熟悉的方式声明标准的.NET类,但它也有模块的概念,模块是值、函数和类型的集合(可以对比一下命名空间,后者只能包含类型)。
这也是我们能够访问“List.map”的原因。在F#库(FSharp.Core.dll)中,有一个名为“List”的模块,它包含了函数 “map”。
在快速开发的过程中,如果不需要花费时间去设计严格的面向对象类型体系,就可以采用模块来封装代码。要声明自己的模块,要使用module关键字。在下面的例子中,我们将为模块添加一个可修改的变量,该变量也是一个全局变量。
module ProgramSettings =
let version = "1.0.0.0"
let debugMode = ref false
module MyProgram =
do printfn "Version %s" ProgramSettings.version
open ProgramSettings
debugMode := true
4. 元组(Tuples)
元组(tuple,发音为‘two-pull’)表示值的有序集合,而这些值可看作一个整体。按传统的方式,如果您要传递一组相关的值,需要创建结构(struct)或类(class),或者还需要“out”参数。使用元组我们可以将相关的值组织起来,同时并不需要引入新的类型。
要定义一个元组,只要将一组值用逗号分隔,并用圆括号把它们括起来即可。
> let tuple = (1, false, "text");;
val tuple : int * bool * string
> let getNumberInfo (x : int) = (x, x.ToString(), x * x);;
val getNumberInfo : int -> int * string * int
> getNumberInfo 42;;
val it : int * string * int = (42, "42", 1764)
函数甚至可以接受元组为参数:
> let printBlogInfo (owner, title, url) = printfn "%s's blog [%s] is online at '%s'" owner title url;;
val printBlogInfo : string * string * string -> unit
> let myBlog = ("Chris", "Completely Unique View", "http://blogs.msdn.com/chrsmith");;
val myBlog : string * string * string
> printBlogInfo myBlog;;
Chris's blog [Completely Unique View] is online at 'http://blogs.msdn.com/chrsmith'
val it : unit = ()
5. 函数柯里化(Function Currying)
F#提供的一个新奇的特性是可以只接受参数的一个子集,而接受部分参数的结果则是一个新的函数。这就是所谓的“函数柯里化”。比如,假设有一个函数接受3个整数,返回它们的和。我们可以只传入第一个参数,假设值为10,这样我们就可以说将原来的函数柯里化了,而它会返回一个新的函数——新函数接受两个整数,返回它们与10的和。
> let addThree x y z = x + y + z;;
val addThree : int -> int -> int -> int
> let addTwo x y = addThree 10 x y;;
val addTwo : int -> int -> int
> addTwo 1 1;;
val it : int = 12
6. Union类型(Union Types,Discriminated Unions)
考虑下面的枚举值:
enum CardSuit { Spade = 1, Club = 2, Heart = 3, Diamond = 4};
理论上,一个card实例只有一种可能的取值,但由于enum本质上只是整数,您不能确定它的值是否是有效的,在C#中,你可以这么写:
CardSuit invalid1 = (CardSuit) 9000;
CardSuit invalid2 = CardSuit.Club | CardSuit.Diamond;
另外,考虑下面的情形。如果您需要扩展一个enum:
enum Title { Mr, Mrs }
Title枚举可以工作地很好,但一段时间后,如果需要添加一个“Ms”值,那么每一个switch语句都面临一个潜在的bug。当然您可以尝试修复所有的代码,却难免会发生遗漏。
枚举可以很好地表达某些概念,但是却无法提供足够的编译器检查。F#中的Union类型可设定为一组有限的值:数据标签(data tag)。例如,考虑一个表示微软员工的Union:
type MicrosoftEmployee =
| BillGates
| SteveBalmer
| Worker of string
| Lead of string * MicrosoftEmployee list
如果有一个MicrosoftEmployee类型的实例,您就知道它必定是 {BillGates,SteveBalmer,Worker,Lead}之一。另外,如果它是Worker,您可以知道有一个字符串与之关联,也许是他的名字。我们可以轻松地创建Union类型,而后使用模式匹配(下一小节)来匹配它们的值。
let myBoss = Lead("Yasir", [Worker("Chris"); Worker("Matteo"); Worker("Santosh")])
let printGreeting (emp : MicrosoftEmployee) =
match emp with
| BillGates -> printfn "Hello, Bill"
| SteveBalmer -> printfn "Hello, Steve"
| Worker(name) | Lead(name, _)
-> printfn "Hello, %s" name
现在假设需要扩展Union类型:
type MicrosoftEmployee =
| BillGates
| SteveBalmer
| Worker of string
| Lead of string * MicrosoftEmployee list
| ChrisSmith
我们会看到一些编译器警告信息:
编译器检测到您没有匹配Union的每一个数据标签,发出了警告。像这样的检查会避免很多bug,要了解
更多的关于Union类型的信息,看 这篇文章 。
7. 模式匹配(Pattern Matching)
模式匹配看起来像是增强版的switch语句,允许您完成分支型控制流程。除了跟常数值进行比较外,还可以捕获新的值。比如在前面的例子中,我们在匹配Union数据标签时绑定了标识符“name”。
let printGreeting (emp : MicrosoftEmployee) =
match emp with
| BillGates -> printfn "Hello, Bill"
| SteveBalmer -> printfn "Hello, Steve"
| Worker(name) | Lead(name, _)
-> printfn "Hello, %s" name
还可以对数据的“结构”进行匹配,比如对列表(list)进行匹配。(还记得吗,x :: y表示x为列表的一个元素,y是x之后的元素,而[]则是空列表。)
let listLength aList =
match aList with
| [] -> 0
| a :: [] -> 1
| a :: b :: [] -> 2
| a :: b :: c :: [] -> 3
| _ -> failwith "List is too big!"
在这个匹配的最后,我们使用了通配符“_”(下划线),它匹配任意值。如果aList变量包含多于三个的元素,最后的模式子句将执行,并抛出一个异常。模式匹配还可以我们执行任意表达式来确定模式是否匹配(如果表达式的值为false,则不匹配)。
let isOdd x =
match x with
| _ when x % 2 = 0 -> false
| _ when x % 2 = 1 -> true
我们甚至可以使用动态类型测试进行匹配:
let getType (x : obj) =
match x with
| :? string -> "x is a string"
| :? int -> "x is a int"
| :? System.Exception -> "x is an exception"
| :? _ -> "invalid type"
8. 记录类型(Records)
在声明包含若干个公有属性的类型时,记录类型是一种轻量级的方式。它的一个优势是,借助于类型推演系统,编译器可以通过值的声明得出适当的记录类型。
type Address = {Name : string; Address : string; Zip : int}
let whiteHouse = {Name = "The White House"; Address = "1600 Pennsylvania Avenue";
Zip = 20500}
在上面的例子中,首先定义了“Address”类型,那么在声明它的实例时,无须显式地使用类型注解,编译器可根据字段(属性)的名称自行得出类型的信息。所以whiteHouse的类型为Address。
9. Forward Pipe Operator(|>)
|>操作符只是简单地定义为:
let (|>) x f = f x
其类型前面信息为:
'a -> ('a -> 'b) -> 'b
可以这么来理解:x的类型为'a,函数f接受'a类型的参数,返回类型为'b,操作符的结果就是将x传递给f后所求得的值。
还是来看个例子吧:
// Take a number, square it, then convert it to a string, then reverse that string
let square x = x * x
let toStr (x : int) = x.ToString()
let rev (x : string) = new String(Array.rev (x.ToCharArray()))
// 32 -> 1024 -> "1024" -> "4201"
let result = rev (toStr (square 32))
上面的代码是很直白的,但语法看起来却不太好。我们所做的就是将一个运算的结果传给下一个运算。我们可以通过引入几个变量来改写代码为:
let step1 = square 32
let step2 = toStr step1
let step3 = rev step2
let result = step3
但是我们需要维护这几个临时变量。|>操作符接受一个值,将其“转交”给一个函数。这会大大地简化F#代码:
let result = 32 |> square |> toStr |> rev
10. 序列(Sequence,System.Collections.Generic.IEnumerator<_>)
序列(在F#中为seq)是 System.Collections.Generic.IEnumerator的别名,但它在F#中有另外的作用。不像列表和数组,序列可包含无穷个值。只有当前的值保存在内存中,一旦序列计算了下个值,当前的值就会被忘记(丢弃)。例如,下面的代码生成了一个包含所有整数的序列。
let allIntegers = Seq.init_infinite (fun i -> i)
11. 集合(Collections:Seq,List,Array)
在F#中,如果您想表示一个值的集合,至少有三个好的选择——数组、列表和序列,它们都有各自的优点。而且每种类型都有一系列的模块内置于F#库中。您可以使用VS的智能感知来探究这些方法,这里我们来看看最常用的那些:
iter 。“iter”函数遍历集合的每一项。这与“foreach”循环是一致的。下面的代码打印列表的每一项:
List.iter (fun i -> printfn "Has element %d" i) [1 .. 10]
map 。像我在 上篇文章 中所说的,map函数基于一个指定的函数对集合的值进行转换。下面的例子将数组的整数值转换为它们的字符串表示:
Array.map (fun (i : int) -> i.ToString()) [| 1 .. 10 |]
fold 。“fold”函数接受一个集合,并将集合的值折叠为单个的值。像iter和map一样,它接受一个函数,将其应用于集合的每个元素,但它还接受另一个“accumulator”参数。fold函数基于上一次运算不断地累积accumulator参数的值。看下面的例子:
Seq.fold (fun acc i -> i + acc) 10 { 1 .. 10 }
该代码的功能是:以10为基数(acculator),累加序列中的每一项。
只有序列有fold方法,列表和数组则有fold_left和fold_right方法。它们的不同之处在于计算顺序的不同。
12. 可选值(Option Values)
基于函数式编程的特点,在F#中很难见到null值。但有些情况下,null值比未初始化变量更有意义。有时可选值则表示值未提供(可选值就像C# 中的nullable类型)。
F#中的“可选类型(option type)”有两种状态:“Some”和“None”。在下面的记录类型Person中,中间的字段可能有值,也可能没有值。
type Person = { First : string; MI : string option; Last : string }
let billg = {First = "Bill"; MI = Some("H"); Last = "Gates" }
let chrsmith = {First = "Chris"; MI = None; Last = "Smith" }
13. 延迟求值(惰性值,Lazy Values,Microsoft.FSharp.Core.Lazy<_>)
延迟初始化表示一些值,它们在需要时才进行计算。F#拥有延迟求值特性。看下面的例子,“x”是一个整数,当对其进行求值时会打印 “Computed”。
> let x = lazy (printfn "Computed."; 42);;
val x : Lazy
> let listOfX = [x; x; x];;
val listOfX : Lazy list
> x.Force();;
Computed.
val it : int = 42
可以看到,我们在调用“Force”方法时,对x进行求值,返回的值是42。您可以使用延迟初始化来避免不必要的计算。另外在构造递归值时,也很有用。例如,考虑一个Union值,它用来表示循环列表:
type InfiniteList =
| ListNode of int * InfiniteList
let rec circularList = ListNode(1, circularList)
“circularList”拥有对自身的引用(表示一个无限循环)。不使用延迟初始化的话,声明这样类型的值是不可能的。
现在,您应该对F#的基础有了足够的了解了,下一步,在系列文章的第三部分中,我们将学习一些高级主题——一些F#能做而其他的.NET语言不能做的事情,敬请期待!
作者: Anders Cui
出处: http://anderslly.cnblogs.com