[LeetCode]Count of Range Sum

Given an integer array nums, return the number of range sums that lie in [lower, upper] inclusive.
Range sum S(i, j) is defined as the sum of the elements in nums between indices i and j (i ≤ j), inclusive.

Note:
A naive algorithm of O(n2) is trivial. You MUST do better than that.

Example:
Given nums = [-2, 5, -1]lower = -2upper = 2,
Return 3.

The three ranges are : [0, 0][2, 2][0, 2] and their respective sums are: -2, -1, 2.


首先求出把数i的前面所有数的累加值数组,prefix_sums[i] , 那么S(i,j) = prefix_sums[j] - prefix_sums[i].

这样问题就可以简化为.

对于一个i,(0<i<n-1),找到有效的点(j>i)使得:

lower + prefix_sums[i] <= prefix_sums[j] <= upper + prefix_sums[i]

这样可以转化为一个Range Search 问题。

这个问题可以在O(log n + K)(K是在Range个数)利用二叉搜索树解决。

STL的multiset是利用二叉搜索树实现的。利用multiset 即可。

class Solution {
public:
    int countRangeSum(vector<int>& nums, int lower, int upper) {
        multiset<long long> Set ;
        vector<long long> PreSum(nums.size()+1) ;
        long long sum = 0;
        PreSum[0] = 0;
        for(int i=0; i<nums.size(); ++i){
            sum += nums[i];
            PreSum[i+1] = sum;
        }
        int count = 0;
        for(int i=nums.size(); i>=1 ; --i){
            Set.insert(PreSum[i]);
            
            auto lowbound = Set.lower_bound(PreSum[i-1]+lower);
            auto uppbound = Set.upper_bound(PreSum[i-1]+upper);
            
            count += distance(lowbound,uppbound);
        }
        return count;
    }
};



你可能感兴趣的:([LeetCode]Count of Range Sum)