PDF (English) | Statistics | Forum |
Time Limit: 4 second(s) | Memory Limit: 32 MB |
Somewhere near the South Pole, a number of penguins are standing on a number of ice floes. Being social animals, the penguins would like to get together, all on the same floe. The penguins do not want to get wet, so they have use their limited jump distance to get together by jumping from piece to piece. However, temperatures have been high lately, and the floes are showing cracks, and they get damaged further by the force needed to jump to another floe. Fortunately the penguins are real experts on cracking ice floes, and know exactly how many times a penguin can jump off each floe before it disintegrates and disappears. Landing on an ice floe does not damage it. You have to help the penguins find all floes where they can meet.
A sample layout of ice floes with 3 penguins on them
Input starts with an integer T (≤ 25), denoting the number of test cases.
Each case starts with the integer N (1 ≤ N ≤ 100) and a floating-point number D (0 ≤ D ≤ 105), denoting the number of ice pieces and the maximum distance a penguin can jump. After that there will be N lines, each line containing xi, yi, ni and mi, denoting for each ice piece its X and Y coordinate, the number of penguins on it and the maximum number of times a penguin can jump off this piece before it disappears (-10000 ≤ xi, yi ≤ 10000, 0 ≤ ni ≤ 10, 1 ≤ mi ≤ 200).
For each case of input, print the case number and a space-separated list of 0-based indices of the pieces on which all penguins can meet. If no such piece exists, output -1.
Sample Input |
Output for Sample Input |
2 5 3.5 1 1 1 1 2 3 0 1 3 5 1 1 5 1 1 1 5 4 0 1 3 1.1 -1 0 5 10 0 0 3 9 2 0 1 1 |
Case 1: 1 2 4 Case 2: -1 |
#include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <queue> #define MAXN 200+10 #define MAXM 100000+10 #define INF 0x3f3f3f3f using namespace std; struct MAXFLOW { struct Edge{ int from, to, cap, flow, next; }; Edge edge[MAXM], Redge[MAXM]; int head[MAXN], edgenum; int Rhead[MAXN]; int dist[MAXN], cur[MAXN]; bool vis[MAXN]; void init(){ edgenum = 0; memset(head, -1, sizeof(head)); } void addEdge(int u, int v, int w) { Edge E1 = {u, v, w, 0, head[u]}; edge[edgenum] = E1; head[u] = edgenum++; Edge E2 = {v, u, 0, 0, head[v]}; edge[edgenum] = E2; head[v] = edgenum++; } bool BFS(int s, int t) { queue<int> Q; memset(dist, -1, sizeof(dist)); memset(vis, false, sizeof(vis)); dist[s] = 0, vis[s] = true; Q.push(s); while(!Q.empty()) { int u = Q.front(); Q.pop(); for(int i = head[u]; i != -1; i = edge[i].next) { Edge E = edge[i]; if(!vis[E.to] && E.cap > E.flow) { dist[E.to] = dist[u] + 1; if(E.to == t) return true; vis[E.to] = true; Q.push(E.to); } } } return false; } int DFS(int x, int a, int t) { if(x == t || a == 0) return a; int flow = 0, f; for(int &i = cur[x]; i != -1; i = edge[i].next) { Edge &E = edge[i]; if(dist[E.to] == dist[x] + 1 && (f = DFS(E.to, min(a, E.cap-E.flow), t)) > 0) { edge[i].flow += f; edge[i^1].flow -= f; flow += f; a -= f; if(a == 0) break; } } return flow; } int Maxflow(int s, int t) { int flow = 0; while(BFS(s, t)) { memcpy(cur, head, sizeof(head)); flow += DFS(s, INF, t); } return flow; } }; MAXFLOW dinic; int n; double limit; int S, T; double dis(double x1, double y1, double x2, double y2){ return sqrt((x1-x2) * (x1-x2) + (y1-y2) * (y1-y2)); } double x[110], y[110]; int num[110], can[110]; void getMap() { dinic.init(); for(int i = 1; i <= n; i++) { if(num[i]) dinic.addEdge(S, i, num[i]); dinic.addEdge(i, i+n, can[i]); for(int j = i+1; j <= n; j++) if(dis(x[i], y[i], x[j], y[j]) <= limit) dinic.addEdge(i+n, j, INF), dinic.addEdge(j+n, i, INF); } } int kcase = 1; void solve() { scanf("%d%lf", &n, &limit); int sumflow = 0; for(int i = 1; i <= n; i++) scanf("%lf%lf%d%d", &x[i], &y[i], &num[i], &can[i]), sumflow += num[i]; //memcpy(dinic.Rhead, dinic.head, sizeof(dinic.head)); //memcpy(dinic.Redge, dinic.edge, sizeof(dinic.edge)); int have = 0; S = 0, T = 2*n+1; printf("Case %d: ", kcase++); for(int i = 1; i <= n; i++) { getMap(); dinic.addEdge(i, T, INF); if(dinic.Maxflow(S, T) == sumflow)//满流 { if(have) printf(" "); printf("%d", i-1); have++; } } if(have == 0) printf("-1\n"); else printf("\n"); } int main() { int t; scanf("%d", &t); while(t--){ solve(); } return 0; }