lightoj 1038 - Race to 1 Again 【概率dp】

题目链接:lightoj 1038 - Race to 1 Again

1038 - Race to 1 Again
PDF (English) Statistics Forum
Time Limit: 2 second(s) Memory Limit: 32 MB
Rimi learned a new thing about integers, which is - any positive integer greater than 1 can be divided by its divisors. So, he is now playing with this property. He selects a number N. And he calls this D.

In each turn he randomly chooses a divisor of D (1 to D). Then he divides D by the number to obtain new D. He repeats this procedure until D becomes 1. What is the expected number of moves required for N to become 1.

Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case begins with an integer N (1 ≤ N ≤ 105).

Output
For each case of input you have to print the case number and the expected value. Errors less than 10-6 will be ignored.

Sample Input
Output for Sample Input
3
1
2
50
Case 1: 0
Case 2: 2.00
Case 3: 3.0333333333

PROBLEM SETTER: JANE ALAM JAN

题意:要求将一个数变成1,每次可以除去它的任意一个因子,问你次数的期望。

思路:其实我不懂为什么dp[2] = 2,按这递推就过了。。。

AC代码:

#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <iostream>
#define CLR(a, b) memset(a, (b), sizeof(a))
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN = 1e5 + 1;
double dp[MAXN];
void get() {
    dp[1] = 0; dp[2] = 2;
    for(int i = 3; i < MAXN; i++) {
        int num = 0;
        for(int j = 1; j * j <= i; j++) {
            if(i % j == 0) {
                num++;
                if(j * j != i) num++;
            }
        }
        dp[i] = 1; num--;
        for(int j = 1; j * j <= i; j++) {
            if(i % j == 0) {
                dp[i] += dp[j] * 1.0 / num;
                if(j * j != i) {
                    dp[i] += dp[i / j] * 1.0 / num;
                }
            }
        }
    }
}
int main()
{
    get();
    int t, kcase = 1;
    scanf("%d", &t);
    while(t--) {
        int n; scanf("%d", &n);
        printf("Case %d: %.6lf\n", kcase++, dp[n]);
    }
    return 0;
}

你可能感兴趣的:(lightoj 1038 - Race to 1 Again 【概率dp】)