题目大意:
就是给出一棵树然后p次操作, 每次操作询问从当前位置到某个位置的路径的权值和, 另外一个操作是修改某条边的权值
大致思路:
树链剖分第二题...
因为写线段树的在建树的时候没有pushUp调试了一个小时才发现....感觉自己智商好捉急.....
不过因为这个原因对于树链剖分的过程更熟悉了...
首先在处理边的时候, 我们先将边上的信息转移到点上, 这里我们将所有的边的信息转移到其深度更大的结点上
于是在处理两点之间的距离时, 沿着剖分之后的路径走的时候, 如果到了top[x] == top[y]的情况(top[x] 表示点x所在链的深度最小的点, 即链的顶点)
如果x == y那么就直接结束, 如果top[x] < top[y]则应该加上x到hson[y]之间的点的权值和, hson[y]为y的重儿子(top[x] == top[y] && x != y只会出现在重链上)
于是整个过程就很简单了, 整体复杂度O(n*logn*logn)
代码如下:
Result : Accepted Memory : 8912 KB Time : 1610 ms
/* * Author: Gatevin * Created Time: 2015/9/7 20:41:59 * File Name: Sakura_Chiyo.cpp */ #include<iostream> #include<sstream> #include<fstream> #include<vector> #include<list> #include<deque> #include<queue> #include<stack> #include<map> #include<set> #include<bitset> #include<algorithm> #include<cstdio> #include<cstdlib> #include<cstring> #include<cctype> #include<cmath> #include<ctime> #include<iomanip> using namespace std; const double eps(1e-8); typedef long long lint; #define maxn 100010 int top[maxn]; int grandson[maxn]; int dep[maxn]; int siz[maxn]; int belong[maxn]; int father[maxn]; int Q[maxn]; int cnt; int hson[maxn]; int n, q, s; bool vis[maxn]; int id[maxn]; int antiID[maxn]; struct Edge { int u, v, w, nex; Edge(int _u, int _v, int _w, int _nex) { u = _u, v = _v, w = _w, nex = _nex; } Edge(){} }; int head[maxn];//用于邻接表 int tot;//总边数 Edge edge[maxn << 1]; int w[maxn];//将其父边的权值信息降到这个结点处 void add_Edge(int x, int y, int w) { edge[++tot] = Edge(x, y, w, head[x]); head[x] = tot; return; } void split() { cnt = 0; int l = 0, r = 1; dep[Q[r] = 1] = 1; father[r] = -1; w[r] = 0; while(l < r) { int x = Q[++l]; if(head[x] == -1) continue; for(int j = head[x]; j + 1; j = edge[j].nex) { int y = edge[j].v; if(y == father[x]) continue; w[y] = edge[j].w; dep[Q[++r] = y] = dep[x] + 1; father[y] = x; } } for(int i = n; i; i--) { int x = Q[i], p = -1; siz[x] = 1; if(head[x] == -1) continue; for(int j = head[x]; j + 1; j = edge[j].nex) { int y = edge[j].v; if(y == father[x]) continue; siz[x] += siz[y]; if(p == -1 || (p > 0 && siz[y] > siz[p])) p = y; } if(p == -1) { hson[x] = -1; grandson[++cnt] = x; belong[top[cnt] = x] = cnt; } else { hson[x] = p; belong[x] = belong[p]; top[belong[x]] = x; } } int idx = 0; memset(vis, 0, sizeof(vis)); for(int i = n; i; i--)//完成树上的点到线段树控制的区间的映射 { int x = Q[i]; if(vis[x]) continue; vis[x] = 1; id[x] = ++idx;//实际上的结点x对应的区间位置 antiID[idx] = x; while(father[x] != -1 && belong[father[x]] == belong[x] && !vis[father[x]]) { x = father[x]; id[x] = ++idx; antiID[idx] = x; vis[x] = 1; } } return; } //线段树单点修改区间求和 #define lson l, mid, rt << 1 #define rson mid + 1, r, rt << 1 | 1 int val[maxn << 2]; void pushUp(int rt) { val[rt] = val[rt << 1] + val[rt << 1 | 1]; return; } void build(int l, int r, int rt) { if(l == r) { val[rt] = w[antiID[l]]; return; } int mid = (l + r) >> 1; build(lson); build(rson); pushUp(rt); return; } void update(int l, int r, int rt, int pos, int value) { if(l == r) { val[rt] = value; return; } int mid = (l + r) >> 1; if(pos <= mid) update(lson, pos, value); else update(rson, pos, value); pushUp(rt); return; } int query(int l, int r, int rt, int L, int R) { if(l >= L && r <= R) return val[rt]; int mid = (l + r) >> 1; int ret = 0; if(mid >= L) ret += query(lson, L, R); if(mid + 1 <= R) ret += query(rson, L, R); return ret; } int answer(int x, int y)//询问x到y的路径和 { int ans = 0; while(top[belong[x]] != top[belong[y]]) { if(dep[top[belong[x]]] < dep[top[belong[y]]]) swap(x, y); ans += query(1, n, 1, id[x], id[top[belong[x]]]); x = father[top[belong[x]]]; } if(x == y) return ans;//注意这里结点代表的是向上与父亲节点连边的权值, 当x == y的时候直接结束 //否则两者在同一条链上, 且一定是重链 if(dep[x] < dep[y]) swap(x, y);//x是在下面的那个 ans += query(1, n, 1, id[x], id[hson[y]]);//hson[y]是y的重儿子(考虑到点权代表的是与父亲连边的边权) return ans; } void change(int x, int w) { x <<= 1;//双向边 int u = edge[x].u, v = edge[x].v; if(father[u] == v) update(1, n, 1, id[u], w); else update(1, n, 1, id[v], w); return; } int main() { while(scanf("%d %d %d", &n, &q, &s) != EOF) { memset(head, -1, sizeof(head)); tot = 0; int u, v, w; for(int i = 1; i < n; i++) { scanf("%d %d %d", &u, &v, &w); add_Edge(u, v, w); add_Edge(v, u, w); } split(); build(1, n, 1); int op, x; while(q--) { scanf("%d", &op); switch(op) { case 0: scanf("%d", &u); printf("%d\n", answer(s, u)); s = u; break; case 1: scanf("%d %d", &x, &w);//将第x条边的权值改为w change(x, w); break; } } } return 0; } /* 11 10 1 1 2 1 2 6 2 2 7 3 7 8 4 7 11 5 1 3 9 3 5 5 3 9 7 9 10 10 1 4 8 0 8 0 11 0 5 0 5 0 10 0 3 0 6 1 3 199 0 11 0 4 */