BZOJ 2809 APIO 2012 dispatching 平衡树启发式合并

题目大意:给出一棵树,每一个节点有两个值,分别是这个忍者的薪水和忍者的领导力。客户的满意程度是这个点的领导力乘能够取得人数,前提是取的人的薪水总和不超过总的钱数。


思路:只能在子树中操作,贪心的想,我们只要这个子树中cost最小的那些点就可以了。所以就深搜一次,每到一个节点上,把自己和所有子节点的平衡树启发式和并,然后保留不超过总钱数的人数,统计。数据范围比较大,能开long long的地方不要吝啬。

PS:吐槽一下,一开始这个题一直TTT,我以为是我常数写的太大了,别人都用左偏堆写,是不是平衡树已经成为了时代的眼泪了。。。后来我搞到了测点,跑了一下第一组数据等了1分多钟都没出解。我感觉我又要重写了,就出去转转。十分钟之后我回来发现居然出解了!而且居然还对了!!然后我仔细看了一遍程序。。。发现是启发式合并写反了。。。。写反了。。。反了。。。了。。。


CODE:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 100010
using namespace std;

struct Complex{
	long long cost,leader;
}point[MAX];

struct Treap{
	int random,size,cnt;
	long long val,sum;
	Treap *son[2];

	Treap(long long _) {
		val = sum = _;
		size = cnt = 1;
		random = rand();
		son[0] = son[1] = NULL;
	}
	int Compare(long long x) {
		if(x == val)	return -1;
		return x > val;
	}
	void Maintain() {
		size = cnt;
		sum = val * cnt;
		if(son[0] != NULL)	size += son[0]->size,sum += son[0]->sum;
		if(son[1] != NULL)	size += son[1]->size,sum += son[1]->sum;
	}
}*tree[MAX];

long long points,money;
int head[MAX],total;
int next[MAX << 1],aim[MAX << 1];

long long ans;

inline void Add(int x,int y)
{
	next[++total] = head[x];
	aim[total] = y;
	head[x] = total;
}

inline void Rotate(Treap *&a,bool dir)
{
	Treap *k = a->son[!dir];
	a->son[!dir] = k->son[dir];
	k->son[dir] = a;
	a->Maintain(),k->Maintain();
	a = k;
}

inline void Insert(Treap *&a,long long x)
{
	if(a == NULL) {
		a = new Treap(x);
		return ;
	}
	int dir = a->Compare(x);
	if(dir == -1)	++a->cnt;
	else {
		Insert(a->son[dir],x);
		if(a->son[dir]->random > a->random)
			Rotate(a,!dir);
	}
	a->Maintain();
}

inline int FindMax(Treap *a)
{
	return a->son[1] == NULL ? a->val:FindMax(a->son[1]);
}

inline void Delete(Treap *&a,long long x)
{
	int dir = a->Compare(x);
	if(dir != -1)	Delete(a->son[dir],x);
	else {
		if(a->cnt > 1)	--a->cnt;
		else {
			if(a->son[0] == NULL)	a = a->son[1];
			else if(a->son[1] == NULL)	a = a->son[0];
			else {
				bool _ = (a->son[0]->random > a->son[1]->random);
				Rotate(a,_);
				Delete(a->son[_],x);
			}
		}
	}
	if(a != NULL)	a->Maintain();
}

void Transfrom(Treap *&from,Treap *&aim)
{
	if(from == NULL)	return ;
	Transfrom(from->son[0],aim);
	Transfrom(from->son[1],aim);
	for(int i = 1; i <= from->cnt; ++i)
		Insert(aim,from->val);
	delete from;
	from = NULL;
}

void DFS(int x)
{
	tree[x] = new Treap(point[x].cost);
	if(point[x].cost <= money)
		ans = max(ans,(long long)point[x].leader);
	if(!head[x])
		return ;
	for(int i = head[x]; i; i = next[i]) {
		DFS(aim[i]);
		if(tree[x]->size < tree[aim[i]]->size)
			swap(tree[x],tree[aim[i]]);
		Transfrom(tree[aim[i]],tree[x]);
	}
	while(tree[x]->sum > money)
		Delete(tree[x],FindMax(tree[x]));
	ans = max(ans,(long long)tree[x]->size * point[x].leader);
}

int main()
{
	cin >> points >> money;
	for(int x,i = 1; i <= points; ++i) {
		scanf("%d%lld%lld",&x,&point[i].cost,&point[i].leader);
		Add(x,i);
	}
	DFS(0);
	cout << ans << endl;
	return 0;
}


你可能感兴趣的:(treap,平衡树,bzoj,启发式合并,APIO2012)