HDU 3507 Print Article 斜率优化DP

题目大意:给出一个序列,可以连续出一段序列[l,r],费用为sum[j][i] ^2+M,求输出整个序列的最小费用。


思路:裸DP方程:f[i] = f[j] + (sum[i] - sum[j - 1]) ^ 2 + M,然后整理一下斜率优化

=>   f[j] + sum[j]^2 = 2 * sum[i] * sum[j] - M - f[i]

y = f[j] + sum[j] ^ 2

k = 2 * sum[i]

x = sum[j]


CODE:


#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 500010
#define INF 1e15
using namespace std;

struct Point{
	long long x,y;
	
	Point(long long _ = 0,long long __ = 0):x(_),y(__) {}
}q[MAX];

int cnt,M;
long long src[MAX],sum[MAX],f[MAX];
int front,tail;

inline double GetSlope(Point p1,Point p2)
{
	if(p1.x == p2.x)	return INF;
	return (double)(p2.y - p1.y) / (p2.x - p1.x);
}

inline void Insert(long long x,long long y)
{
	Point temp(x,y);
	while(tail - front >= 2)
		if(GetSlope(q[tail],temp) < GetSlope(q[tail - 1],q[tail]))
			--tail;
		else	break;
	q[++tail] = temp;
}

inline Point GetAns(double slope)
{
	while(tail - front >= 2)
		if(GetSlope(q[front + 1],q[front + 2]) < slope)
			++front;
		else	break;
	return q[front + 1];
}

int main()
{
	while(scanf("%d%d",&cnt,&M) != EOF) {
		for(int i = 1; i <= cnt; ++i) {
			scanf("%I64d",&src[i]);
			sum[i] = sum[i - 1] + src[i];
		}
		front = tail = 0;
		for(int i = 1; i <= cnt; ++i) {
			Insert(sum[i - 1],f[i - 1] + sum[i - 1] * sum[i - 1]);
			Point p = GetAns(sum[i] << 1);
			f[i] = p.y + sum[i] * sum[i] - (p.x * sum[i] << 1) + M;
		}
		printf("%I64d\n",f[cnt]);
	}
	return 0;
}


你可能感兴趣的:(dp,HDU,斜率优化,斜率优化DP)