Codeforces 484E. Sign on Fence 可持久化线段树



大概题意:

给一数组a,问在某一区间L~R中,问对于连续的长为W的一段中最小的数字的最大值是多少.



显然可以转化成二分高度然后判断可行性的问题.


考虑到高度肯定为数组中的某一个值,将数组从大到小排序. 建n棵线段树,对于第 i 棵线段树,将 大于等于a[i] 的叶子的值设置为1,其他的叶子设置为0,问题就转化成了用线段树求某一区间中最长的连续的1的个数,这是一个线段树的经典问题,可以通过维护每个节点的 左边连续和,右边连续和,连续和的最大值 得到.


由于空间问题,不可能建立10^5棵线段树,考虑到相邻的两个线段树之间只有一条边的值是不一样的,可以共用其他节点来节省空间,所以建立一个可持久化线段树就可以了, 具体细节可以看代码 .



E. Sign on Fence
time limit per test
4 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Bizon the Champion has recently finished painting his wood fence. The fence consists of a sequence of n panels of 1 meter width and of arbitrary height. The i-th panel's height is hi meters. The adjacent planks follow without a gap between them.

After Bizon painted the fence he decided to put a "for sale" sign on it. The sign will be drawn on a rectangular piece of paper and placed on the fence so that the sides of the sign are parallel to the fence panels and are also aligned with the edges of some panels. Bizon the Champion introduced the following constraints for the sign position:

  1. The width of the sign should be exactly w meters.
  2. The sign must fit into the segment of the fence from the l-th to the r-th panels, inclusive (also, it can't exceed the fence's bound in vertical direction).

The sign will be really pretty, So Bizon the Champion wants the sign's height to be as large as possible.

You are given the description of the fence and several queries for placing sign. For each query print the maximum possible height of the sign that can be placed on the corresponding segment of the fence with the given fixed width of the sign.

Input

The first line of the input contains integer n — the number of panels in the fence (1 ≤ n ≤ 105).

The second line contains n space-separated integers hi, — the heights of the panels (1 ≤ hi ≤ 109).

The third line contains an integer m — the number of the queries (1 ≤ m ≤ 105).

The next m lines contain the descriptions of the queries, each query is represented by three integers lr and w (1 ≤ l ≤ r ≤ n1 ≤ w ≤ r - l + 1) — the segment of the fence and the width of the sign respectively.

Output

For each query print the answer on a separate line — the maximum height of the sign that can be put in the corresponding segment of the fence with all the conditions being satisfied.

Sample test(s)
input
5
1 2 2 3 3
3
2 5 3
2 5 2
1 5 5
output
2
3
1
Note

The fence described in the sample looks as follows:

Codeforces 484E. Sign on Fence 可持久化线段树_第1张图片

The possible positions for the signs for all queries are given below.

Codeforces 484E. Sign on Fence 可持久化线段树_第2张图片The optimal position of the sign for the first query. Codeforces 484E. Sign on Fence 可持久化线段树_第3张图片The optimal position of the sign for the second query. Codeforces 484E. Sign on Fence 可持久化线段树_第4张图片The optimal position of the sign for the third query.

/* ***********************************************
Author        :CKboss
Created Time  :2015年03月11日 星期三 19时18分54秒
File Name     :CF484E_2.cpp
************************************************ */

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map>

using namespace std;

const int maxn=100100;
const int maxm=maxn*40;

int n;
int ch[maxm][2],leftsum[maxm],rightsum[maxm],allsum[maxm],lenth[maxm];
int T[maxn],tot,res,toleft;

struct Fe
{
	int h,id;
}fe[maxn];

bool cmp(Fe a,Fe b)
{
	return a.h>b.h;
}

/// push_up
void push_up(int rt)
{
	lenth[rt]=lenth[ch[rt][0]]+lenth[ch[rt][1]];

	leftsum[rt]=leftsum[ch[rt][0]];
	if(leftsum[ch[rt][0]]==lenth[ch[rt][0]])
		leftsum[rt]+=leftsum[ch[rt][1]];

	rightsum[rt]=rightsum[ch[rt][1]];
	if(rightsum[ch[rt][1]]==lenth[ch[rt][1]])
		rightsum[rt]+=rightsum[ch[rt][0]];

	allsum[rt]=max(allsum[ch[rt][0]],allsum[ch[rt][1]]);
	allsum[rt]=max(allsum[rt],rightsum[ch[rt][0]]+leftsum[ch[rt][1]]);
}

/// build
int build(int l,int r)
{
	int rt=tot++;
	if(l==r)
	{
		leftsum[rt]=rightsum[rt]=allsum[rt]=0;
		lenth[rt]=1;
		return rt;
	}
	int m=(l+r)/2;
	ch[rt][0]=build(l,m);
	ch[rt][1]=build(m+1,r);
	push_up(rt);
	return rt;
}

/// insert
int insert(int oldrt,int pos,int l,int r)
{
	int rt=tot++;
	ch[rt][0]=ch[oldrt][0];
	ch[rt][1]=ch[oldrt][1];
	if(l==pos&&r==pos)
	{
		leftsum[rt]=rightsum[rt]=allsum[rt]=1;
		lenth[rt]=1;
		return rt;
	}
	int m=(l+r)/2;
	if(pos<=m) ch[rt][0]=insert(ch[oldrt][0],pos,l,m);
	else ch[rt][1]=insert(ch[oldrt][1],pos,m+1,r);
	push_up(rt);
	return rt;
}

/// query
void query(int rt,int L,int R,int l,int r)
{
	if(L<=l&&r<=R)
	{
		res=max(res,allsum[rt]);
		toleft+=leftsum[rt];
		res=max(res,toleft);
		if(leftsum[rt]!=lenth[rt])
			toleft=rightsum[rt];
		res=max(res,toleft);
		return ;
	}

	int m=(l+r)/2;
	if(R<=m) return query(ch[rt][0],L,R,l,m);
	else if(L>m) return query(ch[rt][1],L,R,m+1,r);
	else
	{
		query(ch[rt][0],L,R,l,m);
		query(ch[rt][1],L,R,m+1,r);
	}
}

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);

	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		int x;
		scanf("%d",&x);
		fe[i].h=x; fe[i].id=i;
	}
	sort(fe+1,fe+1+n,cmp);
	T[0]=build(1,n);
	for(int i=1;i<=n;i++)
		T[i]=insert(T[i-1],fe[i].id,1,n);
	int T_T;
	scanf("%d",&T_T);
	while(T_T--)
	{
		int L,R,W;
		scanf("%d%d%d",&L,&R,&W);

		int low=1,high=n,ans;
		while(low<=high)
		{
			int mid=(low+high)/2;
			toleft=res=0;
			query(T[mid],L,R,1,n);
			if(res>=W)
			{
				ans=mid; high=mid-1;
			}
			else low=mid+1;
		}
		printf("%d\n",fe[ans].h);
	}
    return 0;
}







你可能感兴趣的:(Codeforces 484E. Sign on Fence 可持久化线段树)