- Assembly语言的自然语言处理
花韵婷
包罗万象golang开发语言后端
Assembly语言在自然语言处理中的应用引言自然语言处理(NaturalLanguageProcessing,NLP)作为人工智能的一个重要分支,致力于实现计算机与人类语言之间的互动。随着计算能力的提升以及大数据的蓬勃发展,NLP在各个领域的应用如火如荼。从语音识别、机器翻译到情感分析等,NLP正在改变我们与信息之间的互动方式。不过,当前主流的NLP研究通常是用高级编程语言(如Python、Ja
- NPU的应用场景:从云端到边缘
绿算技术
NPU架构介绍缓存人工智能科技深度学习
NPU的应用场景非常广泛,主要包括以下几个方面:1.云计算与数据中心AI推理服务:在云端提供高效的AI推理服务,例如图像识别、语音识别。模型训练加速:在大规模训练任务中,NPU可以作为加速单元,提升训练效率。2.边缘计算智能摄像头:在安防监控中,NPU可以实时处理视频流,实现目标检测和跟踪。智能音箱:在语音助手中,NPU可以加速语音识别和自然语言处理任务。3.自动驾驶实时感知:NPU可以加速自动驾
- 吴恩达机器学习笔记复盘(二)监督学习和无监督学习
wgc2k
机器学习机器学习笔记学习
监督学习经济价值以及定义监督学习是机器学习中创造了99%经济价值的类型,它是学习输入到输出映射的算法,关键在于给学习算法提供包含正确答案(即给定输入X的正确标签Y)的学习例子。生活中的例子邮件分类,输入是电子邮件,输出是判断邮件是否为垃圾邮件。语音识别,输入音频剪辑,输出文本记录。机器翻译,输入一种语言文本,输出其他语言的相应翻译。在线广告,输入广告和用户信息,预测用户是否点击广告,为公司带来大量
- Python中用SpeechRecognition库和 vosk模型来识别语音
老菜鸟YDZ
菜鸟学pythonpython开发语言语音识别人工智能xcode
Python中的SpeechRecognition库是一个比较好用的语音识别模块,提供了将语音识别成文字的方法,支持中文识别。一、SpeechRecognition库的安装使用pip命令安装即可:pipinstallSpeechRecognition当安装不成功时,可以强制:pipinstall--force-SpeechRecognition二、SpeechRecognition库的导入:i
- 人工智能概念
zhangpeng455547940
计算机人工智能
机器学习、深度学习、大模型机器学习提供框架,使得系统可以从数据中学习算法:线性回归、逻辑回归、支持向量机、决策树、随机森林、K近邻算法深度学习是实现这一目标的工具,模仿人脑,使用多层神经网络进行学习算法:多层感知器、卷积神经网络、循环神经网络、长短期记忆网络大模型指参数量巨大的深度学习模型人工智能应用:自然语言处理、图像识别与生成、语音识别、政务与企业服务...
- 【自学笔记】讯飞星火基础知识点总览-持续更新
Long_poem
笔记
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录讯飞星火基础知识点总览一、讯飞星火简介二、核心功能1.语音识别2.自然语言处理3.知识图谱4.星火API三、基础概念1.AI模型2.数据处理3.交互方式四、应用场景示例1.办公场景2.学习场景3.生活场景五、总结总结讯飞星火基础知识点总览一、讯飞星火简介讯飞星火是科大讯飞推出的一款强大的AI技术平台,它集成了语音识别、自然语言
- 【Python】构建智能语音助手:使用Python实现语音识别与合成的全面指南
蒙娜丽宁
Python杂谈python语音识别开发语言
随着人工智能技术的迅猛发展,语音助手已成为人们日常生活中不可或缺的一部分。从智能手机到智能家居设备,语音交互提供了便捷高效的人机交互方式。本文旨在全面介绍如何利用Python编程语言及其强大的库——SpeechRecognition和gTTS,构建一个基础但功能完备的语音助手。文章首先概述了语音识别与合成的基本原理和关键技术,随后详细讲解了如何安装和配置必要的开发环境。通过丰富的代码示例和详细的中
- 【AI深度学习网络】Transformer时代,RNN(循环神经网络)为何仍是时序建模的“秘密武器”?
arbboter
人工智能rnn人工智能深度学习循环神经网络记忆序列数据循环连接
引言:什么是循环神经网络(RNN)?循环神经网络(RecurrentNeuralNetwork,RNN)是一种专门处理序列数据(如文本、语音、时间序列)的深度学习模型。与传统神经网络不同,RNN具有“记忆”能力,能够通过内部状态(隐藏状态)保留历史信息,从而捕捉序列中的时间依赖关系。在自然语言处理、语音识别、时间序列预测等领域,数据本质上是序列化的——即当前数据点与前后数据点存在依赖关系。传统的前
- 多模态大模型:技术原理与实战 模型压缩实战
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战模型压缩实战作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:多模态大模型,技术原理,模型压缩,实战,TensorFlow,PyTorch,模型压缩方法,应用场景1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,多模态大模型在图像识别、语音识别、自然语言处理等领域的应用越来越广泛。然而,多模态大模型通常具有庞大
- 【花雕动手做】基于ESP32S3和通义千问大模型AI语音聊天机器人
驴友花雕
人工智能机器人嵌入式硬件单片机c++基于ESP32S3通义千问AI语音聊天机器人
开源项目1、核心功能:该项目利用ESP32S3开发板,结合通义千问大模型,实现了一个AI语音聊天机器人。用户可以通过语音与机器人进行交互,机器人能够理解用户的语音指令并给出相应的语音回答。2、技术架构:(1)语音识别:使用语音转文字大模型,将用户的语音输入转换为文本信息。(2)文本理解:将转换后的文本发送到通义千问大模型进行处理,模型会根据文本内容生成相应的回答。(3)语音合成:将模型生成的文本答
- 提高客户体验:人类计算在营销中的应用
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
人类计算与营销:开启个性化时代的未来人类计算与营销:开启个性化时代的未来关键词:人工智能、个性化营销、客户体验、数据驱动、客户关系管理摘要:本文探讨了人类计算在营销中的应用,包括语音识别、人脸识别、自然语言处理等技术,以及如何通过这些技术实现个性化营销、客户关系管理和用户体验优化。文章分析了当前技术的发展趋势和面临的挑战,并提出了未来发展的方向。引言随着人工智能技术的飞速发展,人类计算在各个领域中
- 嵌入式行业全景透视:前景、挑战与从业者发展路径
九溪弥烟、
技术杂谈嵌入式硬件
ARM架构各版本内核处理器总结模拟电子与数字电子:区别、联系与工程实践的侧重点为什么晶振被称为芯片的心脏?(全网最准确解释)一、行业前景:技术融合与市场扩张的双重驱动1.应用场景的泛在化渗透嵌入式系统已从传统工业控制、消费电子扩展到智能汽车、智慧医疗、边缘计算等新兴领域。例如,智能家居通过语音识别与传感器联动实现设备协同,工业4.0中嵌入式系统支撑自动化产线的实时控制与数据采集。据预测,2028年
- 【实战项目】Python 手撕一个基于最新端到端大模型的语音聊天系统
kakaZhui
解码前沿多模态大模型:认知分析和工业级实战python开发语言AIGC人工智能chatgpt
写在前面:为什么需要端到端语音交互近年来,随着深度学习技术的飞速发展,语音交互技术取得了显著的进步。从智能音箱到虚拟助手,语音交互已经渗透到我们生活的方方面面。然而,传统的语音交互系统往往采用“语音识别(ASR)-自然语言理解(NLU)-对话管理(DM)-自然语言生成(NLG)-语音合成(TTS)”的级联式架构,这种架构存在着诸多弊端,如:错误累积:每个模块的错误都会传递到下一个模块,导致最终结果
- 【有啥问啥】深入浅出:大模型应用工具 Ollama 技术详解
有啥问啥
大模型科普人工智能深度学习
深入浅出:大模型应用工具Ollama技术详解引言近年来,大型模型(LargeModels,LLMs)技术突飞猛进,在自然语言处理、计算机视觉、语音识别等领域展现出强大的能力。然而,部署和运行这些庞大的模型往往面临着环境配置复杂、资源需求高昂等挑战。为了解决这些痛点,Ollama应运而生。本文将深入探讨Ollama,一个旨在简化大模型本地运行和管理的开源工具,帮助读者理解其核心概念、优势以及应用场景
- TORGO 数据库:构音障碍语音研究的宝贵资源
帅小柏
语音识别与Wenet实战语音识别与ESPnet实战语音识别
TORGO数据库:构音障碍语音研究的宝贵资源在语音识别和语音病理学领域,构音障碍(Dysarthria)是一个重要的研究方向。构音障碍是由神经运动接口异常引起的,导致发音器官运动异常,语音不清晰,传统自动语音识别(ASR)系统难以有效识别。为了推动这一领域的研究,多伦多大学开发了TORGO数据库,这是一个包含构音障碍患者和正常对照组语音数据的宝贵资源。1.数据库简介TORGO数据库是由多伦多大学计
- 人工智能基础知识
yzx991013
人工智能
首先分为两大类:一:机器视觉cv1.特征比较明显2.经典模型:cnn,resnet,deepface,yolov(1-12),vi-transformer。缺点:不能解决收听问题。3.落地,无人识别,轨道追踪,无人驾驶,(主要解决看的东西)。二:自然语言处理nlp(语音识别)处理(文本)方面解决(说和听的问题),RNN,LSTM,attention,transformer(基于规则的翻译,超越普通
- 服务器、群晖,飞牛NAS等部署Whisper ASR教程来啦!让我们的Nas轻松实现音频转文字服务!
xiaoqiangclub
群晖助手服务器whisper音视频ASR语音转文字实用教程
文章目录介绍演示环境服务器/群晖/飞牛NAS部署WhisperASR,语音识别soeasy!准备部署使用Python调用示例注意事项⚓️相关链接⚓️介绍最近有人私信我,有没有什么办法能在NAS上搞个语音识别服务,实现将语音或开会录音自动转成文字?那么今天我们就一起来看看如何在服务器或群晖/飞牛等Nas上部署一个语音转文字的服务,让我们的NAS瞬间变身“听译”大师!演示环境本文演示环境如下:群晖系统
- 神经网络VS决策树
Persistence is gold
神经网络决策树人工智能
神经网络(NeuralNetworks)和决策树(DecisionTrees)是两种不同的机器学习算法,各自具有独特的优点和适用场景。以下是它们的详细比较:神经网络优点:强大的学习能力:神经网络,尤其是深度神经网络,能够自动学习数据中的复杂特征,可以处理高维和非线性的问题。适用性广泛:神经网络适用于分类、回归、图像处理、语音识别、自然语言处理等多种任务。多层结构:通过增加隐藏层,神经网络可以逐层提
- windows实现麦克风持续实时实现科大讯飞语音识别,判断声音是否停止并生成pcm文件
青年夏日科技工作者
语音识别人工智能
importpyaudio,waveimportnumpyasnpdeflisten():temp=20CHUNK=1024FORMAT=pyaudio.paInt16CHANNELS=1RATE=16000RECORD_SECONDS=2SAMPLE_WIDTH=2#2bytespersampleWAVE_OUTPUT_FILENAME='test.wav'mindb=2000#最小声音,大于则
- AI 外呼产品架构解读:让智能外呼更精准高效
MARS_AI_
人工智能架构自然语言处理信息与通信
在人工智能(AI)技术迅猛发展的今天,AI外呼系统已成为呼叫中心领域的新宠。本文将剖析AI外呼产品的基本架构,帮助读者理解其背后的技术逻辑和应用价值。一、支撑能力层:AI外呼的基石AI外呼系统的底层架构,即支撑能力层,为整个系统提供了坚实的技术基础。这一层主要包括以下三个核心组成部分:1.AI基础能力AI基础能力涵盖了语音识别(ASR)、自然语言处理(NLP)和语音合成(TTS)等技术。这些技术使
- 国内外优秀AI外呼产品推荐
MARS_AI_
人工智能自然语言处理sassnlp信息与通信
在数字化转型浪潮中,AI外呼系统凭借其高效率、低成本、精准交互的特点,成为企业客户触达与服务的核心工具。本文基于行业实践与技术测评,推荐国内外表现突出的AI外呼产品,重点解析国内标杆企业云蝠智能,并对比其他代表性产品,助企业快速选型。一、云蝠智能:大模型驱动的“性价比之王”作为国内AI外呼领域的领军者,云蝠智能以神鹤AI对话大模型为核心技术,深度融合自然语言处理(NLP)、语音识别(ASR)与语音
- AI大模型教程入门到精通,非常详细收藏我这一篇就够了!AI大模型零基础入门教程(适合小白)
AGI大模型学习
人工智能大模型应用大模型AI产品经理学习AI大模型大模型教程
什么是AI大模型?AI大模型是指使用大规模数据和强大的计算能力训练出来的人工智能模型。这些模型通常具有高度的准确性和泛化能力,可以应用于各种领域,如自然语言处理、图像识别、语音识别等。为什么要学AI大模型?2024人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用,大模型作为其中的重要组成部分,正逐渐成为推动人工智能发展的重要引擎。大模型以其强大的数据处理和模式识别能力,广泛应用于
- 神经进化算法(Neuroevolution) 原理与代码实例讲解
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
神经进化算法,Neuroevolution,进化算法,深度学习,机器学习,遗传算法,神经网络,代码实例1.背景介绍在机器学习领域,神经网络凭借其强大的学习能力和泛化能力,在图像识别、自然语言处理、语音识别等领域取得了显著的成就。然而,传统的神经网络训练方法通常依赖于人工设计的网络结构和参数初始化,这往往需要大量的经验和试错,并且难以找到最优的网络结构和参数。神经进化算法(Neuroevolutio
- 微信小程序毕业设计大全
QQ1305637939
小程序毕业设计小程序答辩javaidea
微信小程序程序列表:微信小程序健身房课程预约系统6638微信小程序投票系统6640微信小程序小说阅读推荐系统6641微信小程序垃圾分类识别系统(语音识别,拍照识别)qt-93982微信小程序网上书店qt-93982微信小程序在线购物系统qt-93982微信小程序课堂签到系统qtail-93982微信小程序人脸识别图书馆座位预约系统qt-93982微信小程序二手物品交易系统qt-93982微信小程序
- 自然语言处理之语法解析:BERT:自然语言处理基础理论
zhubeibei168
自然语言处理1024程序员节自然语言处理bert语音识别人工智能
自然语言处理之语法解析:BERT:自然语言处理基础理论自然语言处理基础自然语言处理的定义与应用自然语言处理(NaturalLanguageProcessing,NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究如何处理和运用自然语言;自然语言认知则是指让计算机“懂”人类的语言。NLP建立于20世纪50年代,随着计算机技术的飞速发展,NLP技术在信息检索、文本挖掘、语音识别、机器翻译、情
- API开发:Flask VS FastAPI
Sherry Wangs
Python开发实践pythonfastapi后端
在当今的Web开发领域,选择合适的框架对于构建高效、稳定且易于维护的API至关重要。Flask和FastAPI是两个备受关注的PythonWeb框架,它们各自具有独特的特点和优势,适用于不同的开发场景。文章目录一、简介二、性能表现三、开发效率(中文语音识别为例)四、代码可读性和维护性五、生态系统和社区支持六、总结一、简介Flask:Flask是一个轻量级的PythonWeb框架,它基于Werkze
- 使用 Vosk 实现语音识别
分发吧
语音识别xcode人工智能
在近两年里,如果说想要在本地部署离线语音识别模型,那么Whisper和FunASR肯定是首选项。所以为什么要使用Vosk呢?优势Vosk是一个离线开源语音识别工具包,它的优点在于:轻量:Vosk提供轻量级的模型(小于50MB大小),可以用于低功耗平台(例如Android、树莓派之类)多编程语言、多平台支持:Python、Java、Node.js、C#、C++、Rust、Go等多语种支持:支持二十多
- python编译安装vosk语音识别包
hzjxinyue
python
不知道为什么,谁把vosk从pip源上删了。没办法只能自己编译安装了。下载源代码gitclonehttps://github.com/alphacep/vosk-api.git进入python文件夹cdvosk-api/python编译安装python3setup.pyinstall
- VOSK语音识别工具包使用教程
邴联微
VOSK语音识别工具包使用教程voskVOSKSpeechRecognitionToolkit项目地址:https://gitcode.com/gh_mirrors/vo/vosk1.项目介绍VOSK是一个开源的语音识别工具包,旨在提供高效的语音识别解决方案。VOSK基于大规模信号数据库概念,通过音频指纹技术进行语音识别。它支持多种语言,并且可以在不同的硬件平台上运行,包括Android和Linu
- DeepSeek全栈接入指南:从零到生产环境的深度实践
量子纠缠BUG
DeepSeek部署AIDeepSeek人工智能深度学习机器学习
第一章:DeepSeek技术体系全景解析1.1认知DeepSeek技术生态DeepSeek作为新一代人工智能技术平台,构建了覆盖算法开发、模型训练、服务部署的全链路技术栈。其核心能力体现在:1.1.1多模态智能引擎自然语言处理:支持文本生成(NLG)、语义理解(NLU)、情感分析等计算机视觉:提供图像分类、目标检测、OCR识别等CV能力语音交互:包含语音识别(ASR)、语音合成(TTS)及声纹识别
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本