传送门:【HDU】2295 Radar
题目分析:重复覆盖套个二分。。。没了
代码如下:
#include <cmath> #include <cstdio> #include <cstring> #include <algorithm> using namespace std ; #define REP( i , a , b ) for ( int i = a ; i < b ; ++ i ) #define REV( i , a , b ) for ( int i = a - 1 ; i >= b ; -- i ) #define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i ) #define FOV( i , a , b ) for ( int i = a ; i >= b ; -- i ) #define CLR( a , x ) memset ( a , x , sizeof a ) #define REC( i , A , o ) for ( int i = A[o] ; i != o ; i = A[i] ) const int MAXC = 60 ; const int MAXR = 60 ; const int MAXN = 60 ; const int MAXNODE = 4000 ; const int INF = 0x3f3f3f3f ; const double eps = 1e-8 ; struct Node { int x , y ; void input () { scanf ( "%d%d" , &x , &y ) ; } } ; struct DLX { int L[MAXNODE] , R[MAXNODE] , U[MAXNODE] , D[MAXNODE] ; int row[MAXNODE] , col[MAXNODE] ; int H[MAXR] , S[MAXC] ; bool vis[MAXC] ; int deep ; int size ; int nv ; Node a[MAXN] , b[MAXN] ; double dis[MAXN][MAXN] ; int n , m , k ; char s[20] ; void init () { CLR ( H , -1 ) ; FOR ( i , 0 , nv ) { S[i] = 0 ; U[i] = D[i] = i ; L[i] = i - 1 ; R[i] = i + 1 ; } L[0] = nv ; R[nv] = 0 ; size = nv ; deep = INF ; } void link ( int r , int c ) { ++ size ; ++ S[c] ; row[size] = r ; col[size] = c ; U[size] = U[c] ; D[size] = c ; D[U[c]] = size ; U[c] = size ; if ( ~H[r] ) { L[size] = L[H[r]] ; R[size] = H[r] ; L[R[size]] = size ; R[L[size]] = size ; } else H[r] = L[size] = R[size] = size ; } void remove ( int c ) { REC ( i , D , c ) { L[R[i]] = L[i] ; R[L[i]] = R[i] ; } } void resume ( int c ) { REC ( i , U , c ) { L[R[i]] = i ; R[L[i]] = i ; } } int h () { int cnt = 0 ; CLR ( vis , 0 ) ; REC ( i , R , 0 ) if ( !vis[i] ) { ++ cnt ; vis[i] = 1 ; REC ( j , D , i ) REC ( k , R , j ) vis[col[k]] = 1 ; } return cnt ; } int dance ( int d ) { if ( d + h () > k ) return 0 ; if ( R[0] == 0 ) return 1 ; int c = R[0] ; REC ( i , R , 0 ) if ( S[c] > S[i] ) c = i ; REC ( i , D , c ) { remove ( i ) ; REC ( j , R , i ) remove ( j ) ; if ( dance ( d + 1 ) ) return 1 ; REC ( j , L , i ) resume ( j ) ; resume ( i ) ; } return 0 ; } double dist ( int i , int j ) { double x = a[i].x - b[j].x ; double y = a[i].y - b[j].y ; return sqrt ( x * x + y * y ) ; } int f ( double r ) { init () ; FOR ( j , 1 , m ) FOR ( i , 1 , n ) if ( dis[i][j] <= r ) link ( j , i ) ; return dance ( 0 ) ; } void solve () { scanf ( "%d%d%d" , &n , &m , &k ) ; nv = n ; FOR ( i , 1 , n ) a[i].input () ; FOR ( i , 1 , m ) b[i].input () ; FOR ( i , 1 , n ) FOR ( j , 1 , m ) dis[i][j] = dist ( i , j ) ; double l = 0 , r = 1500 ; while ( r - l > eps ) { double mid = ( l + r ) / 2 ; if ( f ( mid ) ) r = mid ; else l = mid ; } printf ( "%f\n" , l ) ; } } dlx ; int main () { int T ; scanf ( "%d" , &T ) ; while ( T -- ) dlx.solve () ; return 0 ; }