再理解HDFS的存储机制

再理解HDFS的存储机制

    

1. HDFS开创性地设计出一套文件存储方式,即对文件分割后分别存放;


2. HDFS将要存储的大文件进行分割,分割后存放在既定的存储块(Block)中,并通过预先设定的优化处理,模式对存储的数据进行预处理,从而解决了大文件储存与计算的需求;


3. 一个HDFS集群包括两大部分,即NameNode与DataNode。一般来说,一个集群中会有一个NameNode和多个DataNode共同工作;


4. NameNode是集群的主服务器,主要是用于对HDFS中所有的文件及内容数据进行维护,并不断读取记录集群中DataNode主机情况与工作状态,并通过读取与写入镜像日志文件的方式进行存储;


5. DataNode在HDFS集群中担任任务具体执行角色,是集群的工作节点。文件被分成若干个相同大小的数据块,分别存储在若干个DataNode上,DataNode会定期向集群内NameNode发送自己的运行状态与存储内容,并根据NameNode发送的指令进行工作;


6. NameNode负责接受客户端发送过来的信息,然后将文件存储位置信息发送给提交请求的客户端,由客户端直接与DataNode进行联系,从而进行部分文件的运算与操作。


7. Block是HDFS的基本存储单元,默认大小是64M;


8. HDFS还可以对已经存储的Block进行多副本备份,将每个Block至少复制到3个相互独立的硬件上,这样可以快速恢复损坏的数据;


9. 用户可以使用既定的API接口对HDFS中的文件进行操作;


10. 当客户端的读取操作发生错误的时候,客户端会向NameNode报告错误,并请求NameNode排除错误的DataNode后后重新根据距离排序,从而获得一个新的DataNode的读取路径。如果所有的DataNode都报告读取失败,那么整个任务就读取失败;


11. 对于写出操作过程中出现的问题,FSDataOutputStream并不会立即关闭。客户端向NameNode报告错误信息,并直接向提供备份的DataNode中写入数据。备份DataNode被升级为首选DataNode,并在其余2个DataNode中备份复制数据。NameNode对错误的DataNode进行标记以便后续对其进行处理。



你可能感兴趣的:(hadoop,服务器,hdfs,NameNode,分布式存储)