/*Function Run Fun Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2345 Accepted Submission(s): 1223 Problem Description We all love recursion! Don't we? Consider a three-parameter recursive function w(a, b, c): if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns: 1 if a > 20 or b > 20 or c > 20, then w(a, b, c) returns: w(20, 20, 20) if a < b and b < c, then w(a, b, c) returns: w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c) otherwise it returns: w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1) This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15 , c = 15), the program takes hours to run because of the massive recursion. Input The input for your program will be a series of integer triples, one per line, until the end-of-file flag of -1 -1 -1. Using the above technique, you are to calculate w(a, b, c) efficiently and print the result. Output Print the value for w(a,b,c) for each triple. Sample Input 1 1 1 2 2 2 10 4 6 50 50 50 -1 7 18 -1 -1 -1 Sample Output w(1, 1, 1) = 2 w(2, 2, 2) = 4 w(10, 4, 6) = 523 w(50, 50, 50) = 1048576 w(-1, 7, 18) = 1 Source 冬练三九之一 Recommend lcy | We have carefully selected several similar problems for you: 1730 1203 1723 2285 1204 */ #include<stdio.h> int we[22][22][22]; int main() { int i, j, k, a, b, c; for(i = 0; i < 21; ++i) for(j = 0; j < 21; ++j) for(k = 0; k < 21; ++k) { if(i <= 0 || j <= 0 || k <= 0) we[i][j][k] = 1; else if(i >= 20 || j >= 20 || k >= 20) we[i][j][k] = 1048576; else if(i < j && j < k) we[i][j][k] = we[i][j][k-1] + we[i][j-1][k-1] - we[i][j-1][k]; else we[i][j][k] = we[i-1][j][k] + we[i-1][j-1][k] + we[i-1][j][k-1] - we[i-1][j-1][k-1]; } while(scanf("%d%d%d", &a, &b, &c) != EOF) { if(a==-1&&b==-1&&c==-1) break; if(a <= 0 || b <= 0 || c <= 0) printf("w(%d, %d, %d) = 1\n", a, b, c); else if( a >= 20 || b >= 20 || c >= 20) printf("w(%d, %d, %d) = 1048576\n", a, b, c); else printf("w(%d, %d, %d) = %d\n", a, b, c, we[a][b][c]); } return 0; }
难点:不能用递归函数去做,直接打表,否则就超时了。