传送门:【POJ】3189 Steady Cow Assignment
题目分析:同学说自己写的超时。。。让我看看,然后我敲了一个就过了。。。Orz。。。这逗比一定是敲搓了。。
具体思路是二分区间长度,然后枚举这个区间长度覆盖的区间范围,找到一个就可以退出了,满足要求的条件是:流量等于牛的数量。
赤裸裸的二分最大流。。。
没啥trick啊。。。
代码如下:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std ; #define REP( i , a , b ) for ( int i = a ; i < b ; ++ i ) #define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i ) #define REV( i , a , b ) for ( int i = a - 1 ; i >= b ; -- i ) #define FOV( i , a , b ) for ( int i = a ; i >= b ; -- i ) #define CLR( a , x ) memset ( a , x , sizeof a ) #define CPY( a , x ) memcpy ( a , x , sizeof a ) const int MAXN = 1100 ; const int MAXQ = 1100 ; const int MAXE = 50000 ; const int INF = 0x3f3f3f3f ; struct Edge { int v , c , n ; Edge () {} Edge ( int v , int c , int n ) : v ( v ) , c ( c ) , n ( n ) {} } ; struct NetWork { Edge E[MAXE] ; int H[MAXN] , cntE ; int d[MAXN] , num[MAXN] , pre[MAXN] , cur[MAXN] ; int Q[MAXN] , head , tail ; int s , t , nv ; int flow ; int n , m ; int G[MAXN][20] ; int cap[MAXN] ; void init () { cntE = 0 ; CLR ( H , -1 ) ; } void addedge ( int u , int v , int c ) { E[cntE] = Edge ( v , c , H[u] ) ; H[u] = cntE ++ ; E[cntE] = Edge ( u , 0 , H[v] ) ; H[v] = cntE ++ ; } void rev_bfs () { CLR ( d , -1 ) ; CLR ( num , 0 ) ; head = tail = 0 ; Q[tail ++] = t ; d[t] = 0 ; num[d[t]] = 1 ; while ( head != tail ) { int u = Q[head ++] ; for ( int i = H[u] ; ~i ; i = E[i].n ) { int v = E[i].v ; if ( ~d[v] ) continue ; d[v] = d[u] + 1 ; num[d[v]] ++ ; Q[tail ++] = v ; } } } int ISAP () { CPY ( cur , H ) ; rev_bfs () ; flow = 0 ; int u = pre[s] = s ; while ( d[s] < nv ) { if ( u == t ) { int f = INF , pos ; for ( int i = s ; i != t ; i = E[cur[i]].v ) if ( f > E[cur[i]].c ) { f = E[cur[i]].c ; pos = i ; } for ( int i = s ; i != t ; i = E[cur[i]].v ) { E[cur[i]].c -= f ; E[cur[i] ^ 1].c += f ; } u = pos ; flow += f ; } for ( int &i = cur[u] ; ~i ; i = E[i].n ) if ( E[i].c && d[u] == d[E[i].v] + 1 ) break ; if ( ~cur[u] ) { pre[E[cur[u]].v] = u ; u = E[cur[u]].v ; } else { if ( 0 == ( -- num[d[u]] ) ) break ; int mmin = nv ; for ( int i = H[u] ; ~i ; i = E[i].n ) if ( E[i].c && mmin > d[E[i].v] ) { mmin = d[E[i].v] ; cur[u] = i ; } d[u] = mmin + 1 ; num[d[u]] ++ ; u = pre[u] ; } } return flow ; } int ok ( int mid ) { FOR ( l , 1 , m - mid + 1 ) { init () ; FOR ( i , 1 , n ) { addedge ( s , i , 1 ) ; FOR ( j , l , l + mid - 1 ) addedge ( i , n + G[i][j] , 1 ) ; } FOR ( i , 1 , m ) addedge ( n + i , t , cap[i] ) ; ISAP () ; if ( flow == n ) return 1 ; } return 0 ; } void solve () { s = 0 ; t = n + m + 1 ; nv = t + 1 ; FOR ( i , 1 , n ) FOR ( j , 1 , m ) scanf ( "%d" , &G[i][j] ) ; FOR ( i , 1 , m ) scanf ( "%d" , &cap[i] ) ; int l = 1 , r = m + 1 ; while ( l < r ) { int mid = ( l + r ) >> 1 ; if ( ok ( mid ) ) r = mid ; else l = mid + 1 ; } printf ( "%d\n" , r ) ; } } x ; int main () { while ( ~scanf ( "%d%d" , &x.n , &x.m ) ) x.solve () ; return 0 ; }