【欧拉函数】 HDOJ 3501 Calculation 2

欧拉函数的延伸,小于n且与n互质的和为f(x)*x/2。。。

#include <iostream>  
#include <queue>  
#include <stack>  
#include <map>  
#include <set>  
#include <bitset>  
#include <cstdio>  
#include <algorithm>  
#include <cstring>  
#include <climits>  
#include <cstdlib>
#include <cmath>
#include <time.h>
#define maxn 1005
#define maxm 40005
#define eps 1e-10
#define mod 1000000007
#define INF 999999999
#define lowbit(x) (x&(-x))
#define mp mark_pair
#define ls o<<1
#define rs o<<1 | 1
#define lson o<<1, L, mid  
#define rson o<<1 | 1, mid+1, R  
typedef long long LL;
//typedef int LL;
using namespace std;
LL powmod(LL a, LL b){LL res=1,base=a;while(b){if(b%2)res=res*base%mod;base=base*base%mod;b/=2;}return res;}
void scanf(LL &__x){__x=0;char __ch=getchar();while(__ch==' '||__ch=='\n')__ch=getchar();while(__ch>='0'&&__ch<='9')__x=__x*10+__ch-'0',__ch = getchar();}
LL gcd(LL _a, LL _b){if(!_b) return _a;else return gcd(_b, _a%_b);}
// head

LL phi(LL n)
{
	LL ans = n;
	for(int i = 2; i * i <= n; i++)
		if(n%i == 0) {
			ans -= ans / i;
			while(n%i == 0) n/=i;
		}
	if(n > 1) ans -= ans / n;
	return ans;
}
int main(void)
{
	LL ans, n;
	while(scanf("%I64d", &n), n != 0) {
		ans = (n-1) * n / 2;
		ans -= phi(n) * n /2;
		printf("%I64d\n", ans%mod);
	}
	return 0;
}


你可能感兴趣的:(HDU)