dog.gopher gopher.rat rat.tiger aloha.aloha arachnid.dogA compound catenym is a sequence of three or more words separated by periods such that each adjacent pair of words forms a catenym. For example,
aloha.aloha.arachnid.dog.gopher.rat.tigerGiven a dictionary of lower case words, you are to find a compound catenym that contains each of the words exactly once. The first line of standard input contains t , the number of test cases. Each test case begins with 3 <= n <= 1000 - the number of words in the dictionary. n distinct dictionary words follow; each word is a string of between 1 and 20 lowercase letters on a line by itself. For each test case, output a line giving the lexicographically least compound catenym that contains each dictionary word exactly once. Output "***" if there is no solution.
2 6 aloha arachnid dog gopher rat tiger 3 oak maple elm
aloha.arachnid.dog.gopher.rat.tiger ***
首尾字符相同的单词可以连起来,输出字典序最小的序列把所有串都连起来,如果不能连起来输出***。
看着不难还做了好久。。
欧拉通路:如果图中存在一条通过图中各边一次且仅一次的通路,则称此回路是欧拉通路。有向图欧拉通路判断条件是:图连通,一个点入度比出度大1,另一个点出度比入度大1,或者所有点出度等于入度。
那么这里把字母当成点,单词当成边判断是否是欧拉通路就行,注意先判连通性。有一个问题是输出,我刚开始一直按顺序搜,遇到就输出,这样是不对的。比如za,ac,am,ma,cb,像我那么做直接是ba,ac,cb,而实际应该是za,am,ma,ac,cb。所以搜的时候如果找不到下一条边了就把这条边存起来,最后倒着输出,因为前面判过是欧拉通路了,最后肯定就是答案。
#include<cstdio> #include<cstring> #include<algorithm> #include<string> #include<iostream> #include<queue> #include<map> using namespace std; typedef pair<int,int> pii; const int MAXN=1010; const int MAXM=25; const int MAXNODE=32; const int LOGMAXN=50; const int INF=0x3f3f3f3f; int T,N,K; int vis[MAXN],ans[MAXN],in[30],out[30],alpha[30],top; char a[MAXN][MAXM]; vector<int> G[30]; vector<pii> G2[30]; void dfs1(int u){ vis[u]=1; int len=G[u].size(); for(int i=0;i<len;i++){ int v=G[u][i]; if(!vis[v]) dfs1(v); } } void dfs2(int u){ int len=G2[u].size(); for(int i=0;i<len;i++){ int e=G2[u][i].first; if(!vis[e]){ vis[e]=1; dfs2(G2[u][i].second); ans[top++]=e; } } } int check(){ int cnt=0,ret=0; for(int i=0;i<26;i++){ if(in[i]==out[i]) continue; else if(out[i]-in[i]==1){ cnt++; ret=i; } else if(in[i]-out[i]>1||out[i]-in[i]>1) return -1; } if(!cnt){ for(int i=0;i<26;i++) if(vis[i]){ ret=i; break; } } if(cnt<=1) return ret; return -1; } bool cmp(pii A,pii B){ return strcmp(a[A.first],a[B.first])<0?true:false; } int main(){ freopen("in.txt","r",stdin); scanf("%d",&T); while(T--){ scanf("%d",&N); K=0; memset(out,0,sizeof(out)); memset(in,0,sizeof(in)); memset(vis,0,sizeof(vis)); memset(alpha,0,sizeof(alpha)); for(int i=0;i<26;i++){ G[i].clear(); G2[i].clear(); } int n,c; for(int i=1;i<=N;i++){ scanf("%s",a[i]); int len=strlen(a[i]),u=a[i][0]-'a',v=a[i][len-1]-'a'; out[u]++; in[v]++; if(!alpha[u]){ K++; c=u; alpha[u]=1; } if(!alpha[v]){ K++; c=v; alpha[v]=1; } G[u].push_back(v); G[v].push_back(u); G2[u].push_back(make_pair(i,v)); } int cnt=0; dfs1(c); for(int i=0;i<26;i++) if(vis[i]){ cnt++; } if(cnt==K) n=check(); else n=-1; if(n==-1) printf("***\n"); else{ for(int i=0;i<26;i++) sort(G2[i].begin(),G2[i].end(),cmp); memset(vis,0,sizeof(vis)); top=0; dfs2(n); for(int i=top-1;i>0;i--) printf("%s.",a[ans[i]]); printf("%s\n",a[ans[0]]); } } return 0; }