http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1475
Wavio is a sequence of integers. It has some interesting properties.
· Wavio is of odd length i.e. L = 2*n + 1.
· The first (n+1) integers of Wavio sequence makes a strictly increasing sequence.
· The last (n+1) integers of Wavio sequence makes a strictly decreasing sequence.
· No two adjacent integers are same in a Wavio sequence.
For example 1, 2, 3, 4, 5, 4, 3, 2, 0 is an Wavio sequence of length 9. But 1, 2, 3, 4, 5, 4, 3, 2, 2 is not a valid wavio sequence. In this problem, you will be given a sequence of integers. You have to find out the length of the longest Wavio sequence which is a subsequence of the given sequence. Consider, the given sequence as :
1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1.
Here the longest Wavio sequence is : 1 2 3 4 5 4 3 2 1. So, the output will be 9.
Input
The input file contains less than 75 test cases. The description of each test case is given below: Input is terminated by end of file.
Each set starts with a postive integer, N(1<=N<=10000). In next few lines there will be N integers.
Output
For each set of input print the length of longest wavio sequence in a line.
10 1 2 3 4 5 4 3 2 1 10 19 1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1 5 1 2 3 4 5 |
9 9 1
|
解题思路:
对于每个位置找出其最长上升子序列和反向的最长上升子序列,然后取二者的小者。而后枚举i,找最长的。注意要用前面提到的n*logn的复杂度算法来求LIS否则会超时的。
#include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> using namespace std; const int INF=0x3f3f3f3f; int g[10005],a[10005],d[10005],n,sum1[10005],sum2[10005]; int main() { while(~scanf("%d",&n)) { for(int i=1; i<=n; i++) g[i]=INF; for(int i=0; i<n; i++) { scanf("%d",&a[i]); int k=lower_bound(g+1,g+n+1,a[i])-g; sum1[i]=k; g[k]=a[i]; } for(int i=1; i<=n; i++) g[i]=INF; for(int i=n-1; i>=0; i--) { int k=lower_bound(g+1,g+n+1,a[i])-g; sum2[i]=k; g[k]=a[i]; } /* for(int i=0;i<n;i++) printf("%d %d\n",sum1[i],sum2[i]); */ int maxx=-1; for(int i=0; i<n; i++) maxx=max(maxx,min(sum1[i],sum2[i])); printf("%d\n",maxx*2-1); } return 0; } /** 10 1 2 3 4 5 4 3 2 1 10 19 1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1 5 1 2 3 4 5 **/